@

Center for Human-Machine Systems Research

School of Industrial and Systems Engineering, Georgia Institute of Technology
Atlanta, Georgia 30332-0205

D-A242 519

Wl

Intelligent Tutoring for Diagnostic Problem Solving

1mn

Complex Dynamic Systems

e,

Vijay Vasandani

W oy N

.,

Technical Report CHMSR-91-4

September 1991

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was supported by the Navy Manpower, Personnel, and Training R&D Program
of the Office of the Chief of Naval Research under Contract NO0OO14-87-K-0482.

Approved for public release; distribution unlimited.

91-14569 L
“IEHEN R i HEE , i) . V'c, ¥ 2 4
T g1 o Vo 0%

REPORT DOCUMENTATION PAGE

M Forr.: Approved
OMB No. 0704-0188

oliection of nfor
gatherng and maintaining the data needed. and completing and reviewing the <

COHECTION Of 1 10rMation. Ncluding SUGGestions f0r reducing thr burden. to Washingt
Davis D:hghway. Suite 1204, Avlmq!qon va 22202-4102. and t0 the Office of Management and Budget, Paperwork

T AGENCY USE ONLY (Leave blank)] 2. REPORT DATE
1991 September

Technical

Hesdquartevs Servicm, Directorate information
sy y Reguction Project (0704-0 188). Washington, OC 20503

T
3. REPORT TYPE AND DATES COVERED

Pubhc reporting Burden f0r this collection of inforMation 11 eSUMALEd 1O sversge 1 hOUr DEY rEIRONIE, iINCluding the time 10 MVIGWING IMIAUCTION, Marching exnting data source,

this burden estimate or any other aspect of thn
Operatom and Reports, 1213 jeftenon

4. TITLE AND SUBTITLE

Intelligent Tutoring for Diagnostic Problem Solving in Complex
Dynamic Systems

6. AUTHOR(S)
Vijay Vasandani

S. FUNDING NUMBERS

C: NO00014-87-K-0482
PE: 0602233N
PR: RM33M20

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology
Center for Human-Machine Systems Research
School of Industrial and Systems Engineering
765 Ferst Drive, Atlanta, GA 30332-0205

8. PERFORMING ORGANIZATION
REPORT NUMBER

CHMSR-91-4

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research

Cognitive Science Program (Code 1142CS)

800 North Quincy Street

Arlington, VA 22217-5000

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Program.

Supported by the Office of the Chief of Naval Research Manpower, Personnel, and Training R&D

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Maintenance training for diagnostic problem solving in complex dynamic systems is carried out either
on the job or on simulators. When simulators are used for training, their effectiveness can be improved
by integrating intelligent tutoring systems (ITS) into the training programs. Research results from ITSs
developed for simpler task domains are generally not very useful in complex engineered domains due
to lack of appropriate knowledge representation techniques. The focus of our research is the develop-
ment of a methodology for decomposing, organizing, and representing domain knowledge of complex
dynamic systems for building functional computer-based intelligent tutors.

Using our knowledge representation methodology, we implemented an ITS on an Apple Macintosh Il
computer for the marine power plant domain. The ITS is comprised of a simulated power plant, the
tutor, and mouse-based direct manipulation graphical interfaces. The ITS was experimentally evaluat-
ed using Naval ROTC cadets as subjects. Performance of the subjects was analyzed using measures
such as percentage of premature and correct diagnosis and percentage of relevant and irrelevant diag-
nostic tests were used. Results show that a simulator alone is inadequate, whereas a simulator in con-
junction with an ITS can help develop efficient troubleshooting skills.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION

15. NUMBER OF PAGES

fault diagnosis; problem solving; training; maintenance; intelligent tutoring 391

systems; intelligent computer assisted instruction; interactive learning 16. PRICE COOE

environments; marine power plants: si

19. SECURITY CLASSIFICATION
OFf ABSTRACT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

OF REPORT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 239-18
298.102

INTELLIGENT TUTORING FOR DIAGNOSTIC PROBLEM SOLVING
IN
COMPLEX DYNAMIC SYSTEMS

A THESIS
Presented to
The Academic Faculty of Graduate Studies

By

Vijay Vasandani

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
in the School of Industrial and Systems Engineering

Georgia Institute of Technology K vess..a ¢or

September 1991 LY

Copyright © 1991 by Vijay Vasandani

Dedicated to
my parents, Padma and Vasdev
my brother, Sanjay
and my wife, Geetanjali

for their love and support

ii

ACKNOWLEDGEMENTS

This research was supported by contract N00014-87-K-0482 from the Manpower R&D
Program, Office of Naval Research (Dr. Susan E. Chipman, contract monitor). The author
gratefully acknowledges the financial support provided by this contract which enabled him

to pursue his dreams of higher education.

The author would like to thank Dr. T. Govindaraj, chairperson of his advisory committee,
for the moral support and advice he provided throughout the duration of the author's stay at
Georgia Tech. Dr. Christine Mitchell deserves a special thanks for her help with many
design and implementation issues. Her insightful comments contributed a great deal
towards improving the quality of this work. The author is also grateful to other members of
his dissertation reading committee, Dr. Alex Kirlik, Dr. Ashok Goel and Dr. Bill Johnson

for providing invaluable suggestions.

The author also expresses his gratitude to the faculty and staff of the School of Industrial
and Systems Engineering. In particular, the author is indebted to Dr. R. Heikes for his
help with statistics. A word of thanks also goes to Richard Robison for having the skills
and untiring energy to keep the computers at the Center for Human-Machine Systems

Research in good "health”.

The author acknowledges the dedication of the thirty Navy ROTC cadets who voluntarily
participated as subjects in the experiment and contributed as best as they could to make this
research endeavor a success. The author is also thankful to Lt. Geoffrey L. Owen and Lt.
William A. Marriot. They helped in getting the experiment organized. Lt. William A.
Marriot's experience and knowledge of technical matters contributed to the progress of this

report.

The author also wishes to express his appreciation for all his other colleagues at the Center
for Human-Machine Systems Research: Jim Armstrong, Charlene Benson, Jim
Bushman, Todd Callantine, Julie Chronister, Sally Cohen, Ed Crowther, Kelly Deyoe,
Suzanne Dilley, Brenda Downs, Janet Fath, Dick Henneman, Patty Jones, Merrick
Kossack, Steve Krosner, Wendy Markert, Donald Mead, Laura Moody, S. Narayanan,

Tom Pawlowski, David Resnick, Doug Robinson, Ling Rothrock, Kenny Rubin, Serena
Verfurth, Kim Vicente, Lauren Weisberg, Jim Williams, Chang Yoon, and Wan Yoon.

Finally, the author thanks his immediate family. He is grateful to his parents, Padma and
Vasdev for providing him with the opportunity to pursue higher education, brother, Sanjay
for the encouragement, and wife, Geetanjali for the love and support that cannot be

described in words.

iv

SUMMARY

TABLE OF CONTENTS

..

CHAPTER I: INTRODUCGTION ... e e e

CHAPTER II: INTELLIGENT TUTORING IN COMPLEX SYSTEMS

Background: Diagnostic Problem Solving...............coooiiiiiiiiiii i
Training for Diagnostic Problem Solving i,
Research Objectivesvuuiuiiiriri i e e
Proposed Methodologyccouuiiiiiiiiiiii ittt
T e oL TP

Domain Characteristics. .coooiiiiiieiiiiiiiiiiiiiiiiiiiiiiieeee e

Task Characteristics....coviveiinriiiiiiiiiiiiiiiie et
Implementationiiiiiiiiii it e
Validation

Brief Review of Relevant Research...........cooviiiiiiiiiiiinii i,
General Architecture of IS ... oottt e e e e e
EXPETt MOQUIE - ..o ooeeeeee oo
Student Moduleoooniiti e e e

Training Simulator...........o.oiii i
Interface. ...oooinii i
Problems and Research Objectivecciiiiiiiiiiin i,
Why the Slow Progress........ccooiiiiiii i,
Research Agenda i i

CHAPTER III: SIMULATION AND KNOWLEDGE ORGANIZATION
METHODOLOGIES FOR INTELLIGENT TUTORS IN COMPLEX DYNAMIC

DOMAINS

...

Review of Research Goals

..

Simulation of Complex Dynamic Systems............cccocoviiiniinninn.n.
Knowledge Organization in Intelligent Tutors.............................

An Architectureo e e
Simulation Via Qualitative Approximation..............ccoeviiiiiiiiiiiiinnian ...,
Knowledge Organization....... ...
System Knowledge...........ccoooiiiii i
Schematics.........coovininiiiiii

Functional Subsystems..........c.c.oooeiiiiiiiiiiiiiiiiii.,

Fluidpaths......coooiiiiiiiiiiiiiie e
CompPonentsS....o.vvieeriiieiiiiniiieiierinenens
Structural Knowledge
Functional Knowledge..................

Behavioral Knowledge...............ccooiivviiniiiiiinn. ..

Troubleshooting Knowledge.............................
Task Knowledge Organization.........................
Knowledge to Evaluate Misconceptions................
Instructional Strategies........................ooiil.
Interactive Interfaces and Student-Tutor Interaction.........
111111 7:) o 2 U

CHAPTER IV: AN ITS IMPLEMENTATION: TURBINIA-VYASA

......................

......................

......................

......................

The DOmMAINooovntiiiiiiiii i et iia e eeeiiaaenenns

Marine Power Plant..............oooiiiiil,

Steam Generation.......................oolll

Steam Expansion..............ccoooeiiiiiin.

Steam Condensation.............................

Feed.....ooiiiiiiiiiii i e

Automatic Boiler Control System
Automatic Combustion Control System..............................

Feed Water Control System.....................

Makeup and Excess Feed Control System.....

Troubleshooting Task..........ccccoiiiiiiiiiiiiii,

Student Operator.......coocoveiiiiiiiiiiiiiiiiianns,

Turbinia: The Simulator ..o,

Vyasa: The Computer-Based Tutor..........................

System Knowledge...........cooooiiiiiiiiiiiii il

Fluidpaths...........cooo ittt

Functional Subsystems.......................

Schematics........cociviiiiiiiiiii i

Components........ccooevviiiiiiniiiiieeiianiian..

Failure Knowledgeooooiiiiiiiiiiiiiii,

Modes of Failureccovvviiiiiiiii...

Specific Failures............c.cccooviiiiiin. o

Knowledge of Student Actions................cccounn...

Knowledge to Update the Student Model

Knowledge to Evaluate Misconceptions................

Instructional Knowledge........c..oeviviiiiiiniin,

Contentvvviiiiiriiiiiiieie e

Form... .. o

Time and Duration.......................ooo.

Instructions with Intervention

Instructions without Intervention......

Knowledge Representation and Control Structure.............

Knowledge Representationcc.ooinnt.

Fluidpaths.........cccoviiiiiiiiiii i,

Functional Subsystems................. e

Schematics.........coooiviiiiiiiiiiiiii i,

Graphical Objects............ooveiiiiiiiiiiea..

Components..............cooevvvvvininnnn.

vi

) 00} ¢ - TSN 90
Active RegioNnS ...covvuiiiiiiir et e 92
COMIPONENES. ... iiar ettt iaieeireeeenenrnniteaeaeeeersnennnnes 9
€701 ¥ - -1 J R 108
71 1 -3 108
Failure Modes.......ccuiiviiiiiiiiiii ittt ciie e aa e eas 110
Specific Failures.........cooiiiiiiiiiii i e 110
Control SEIUCtUre oottt 116
Blackboard......ccooviiiiiiiiiiiiiiiiiiir e 117
Tutor Behaviorcooviiiiii e 124
Student Behavior...........coooiiiiiiiiiiii e 124
Knowledge Sourcesovvviuniiniiiiiireriiierniiieanenaaaeenn, 124
ESTEE 000 ¢ 1: 3 o0 20 O PO 127
CHAPTER V: STUDENT-TUTOR INTERFACE OF TURBINIA-VYASA.............. 128
U TR 8 (1Y o £ T - S 128
Interaction with Turbinia-Vyasa..........coooiiiiiiiiiiiiiiiiiiii i iraenanienes 129
Schematic MenU......ooiiiiiiiiiiiiii i i vaeineeenn 131
Requests Memtl . o.viiniiii it ettt ia e e et e e ianns 131
03 11 Y1 . S 131
Tutor Dialog ... oottt e e e e 133
Symptom Dialog.......coiiiiiiiiiiiii i e eeas 133
Interaction with Turbinia......ccoooiiiiiiiiiiiii e 135
Interaction with Vyasa........cooooiiiiiiiiiiii i e e e ae s 148
Passive Mode......ooooiiiiiiiiiii i it i e et e e 148
Active Mode.o e e 163
Hypothesis Menu. ...ttt i, 166
CHAPTER VI: EXPERIMENTAL EVALUATION OF TURBINIA-VYASA............. 176
Informal Evaluationooimiiiiiii it 176
Checking for consistency and correctness..............ccooeevevnvvinnnnnns 176
Pilot Study...oooiiiiiii i e e 177
Formal Experiment.... ..o e 178
Experimental Design.......coooiiiiiiiiiiiiiiiiiiiii e 178
EqQUipment ... i e e 17
J 0.4 11:3 8 1 11-7 ¢ | " N 17
Experimental Materialsooiiiiiiiii i 180
Experimental Procedure.............oooiiiiiiiiiiiiiiiii i 181
Training Phase.........ooviiiiiiiiiiiii i e e 181
Data Collection Phasec..oooiiiiiiiiiii i, 183
Training and Test Problems.................. i, 183
Performance Measures: The Dependent Variables 184
Product Measurescovvinieriiiiiiiiii it 184
Process Measuresc.oooiiiiiiiiiiiiiiii i it 185
Possible differences in performance..................ccoociiiiiiiii i, 187
CHAPTER VII: EXPERIMENTAL RESULTS ... i, 190
Analysis of Data ..ot e 190
| 9 T B D8 i (-1 7 J O 192

vii

Effect of Training Condition...................ccooviiiiiiiiiiinn... 192

Effect of Seen Status............oooiiiiiiiiii i 20

Interaction Effect: Training Condition by Seen Status............ 209

Random Effectsooiiiiiiiiiiiiiiiiii i e 214

Effect of Subject.......cccooiiiiiii e 214

Effect of Problemoooviiiiiiiiiiiiiiiii i 215

Subjective Evaluation ... 216
Discussion of Results.........oooiiiiiiiiiiiiiiiiii i e 218
L0231 0 13 1+ - - TS N 219

CHAPTER VIII: CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH.... 225

Implications of the Research..............oiiiiiiii i, 226

Future Research........ ... 228
APPENDIX A: INSTRUCTION MANUALS ...ttt 231
APPENDIX B: SUBJECT CONSENT FORM........coi ittt 333
APPENDIX C: SURVEY FORM. ...t eaan 336
APPENDIX D: QUESTIONNAIRESot 338
APPENDIX E: SAMPLE COMPUTATIONS OF TEST STATISTICS-I................... 350
APPENDIX F: SAMPLE COMPUTATIONS OF TEST STATISTICS-II 360
APPENDIX G: SOME COMMENTS FROM SUBJECTSccoiiiiiiiiiiieeeeee 364
APPENDIX F: SOME RESPONSES TO QUESTIONNAIRE 3 ..., 368
BIBLIO G RAPHY ..o e 3N
8 - 3an

viii

LIST OF TABLES

Table 4.1 Typical Abnormal System Behavior.................................lll 66
Table 4.2 Description of Object Class FluidPath .. 76
Table 4.3 Description of Object Class FluidPathStructureWithinSchematic.............. 76
Table 4.4 Description of *FuelOilPath*............... i e 78
Table 4.5 Description of Object Class FunctionalSubsystem 80
Table 4.6 Description of Object Class SubsystemStructureWithinSchematic 81
Table 4.7 Description of Object Class SubsystemStructureWithinFluidPath.............. 81
Table 4.8 Description of *CombustionSubsystem™.............c. ittt 83
Table 4.9 Description of Object Class Schematic..............ccooiiiiiiiii i, 85
Table 4.10 Description of *BoilerSchematic*.. ..., 86
Table 4.11 Description of Object Class GeneralGraphicObject.............................. 88
Table 4.12 Description of Object Class Connector.................oooiiiiiiiiiiii ... 89
Table 4.13 Description of Object Class SchematiclconGraphicObject 91
Table 4.14 Description of Object Class IconGaugeGraphicObject........................... 91
Table 4.15 Description of Object Class ActiveRegion...................oooiiiiiiiiiiaa. 93
Table 4.16 Description of Object Class Primitive i, 96
Table 4.17 Description of Object Class PrimitiveGeneralStructure 96
Table 4.18 Description of Object Class SimplePrimitive.....................ccoovviiiin 98
Table 4.19 Description of Object Class SimplePrimitiveSpecificStructure 98
Table 4.20 Description of Object Class CompositePrimitive.............. ... P9
Table 4.21 Description of Object Class CompositePrimitiveSpecificStructure............. 9
Table 4.22 Description of Ob’ect Class StateVariable...................... ..., 100
Table 4.23 Description of Object Class NormalBehaviorProperties 12
Table 4.24a Description of Object Class Capacitor ..., 102
Table 4.24b Description of Object Class CapacitorBehaviorProperties 102
Table 4.25a Description of Object Class Controllero i, 103
Table 4.25b Description of Object Class ControllerBehaviorProperties 103
Table 4.26a Description of Object Class Reactor.............coocciiini.. 104
Table 4.26b Description of Object Class ReactorBehaviorProperties..........cc.cccc..... 104

ix

Table 4.27a Description of Object Class HeatExchanger................................ ... 106

Table 4.27b Description of Object Class HeatExchangerBehaviorProperties.............. 105
Table 4.28a Description of Object Class AbnormalBehavior 107
Table 4.28b Description of Object Class FailureEffect.......................... ... 107
Table 4.29 Description of Object Class Gauge.....c...cccooiviviiiiiiiiiiiiiiieiiiieiinne, 109
Table 4.30 Description of Object Class IconData ..., 109
Table 4.31 Description of Object Class FailureMode..........c.ccooovvveniiiireinninnnn.., 111
Table 4.32 Description of Object Class ExpectedAbnormalBehavior....................... 111
Table 4.33 Description of Object Class SpecificFailureCase................................. 112
Table 4.34 Description of *FailureTwo™*o, 113
Table 4.35 Description of Object Class BlackBoard............cooooiviiiiiiiiiiiiiinnenaan. 119
Table 4.36 Description of Object Class PendingEvent................... .o 120
Table 4.37 Description of Object Class StudentAction ..ot 120
Table 4.38 Description of Object Class TutorBehavior..................ccoo. 12
Table 4.39 Description of Object Class StudentBehavioro....oll, 123
Table 6.1 Summary of Performance Measuresc.coooiiiiiiiiiiiiiiniiiinneian, 188
Table 7.1 Expected Mean Squares Expression...............ccooiiiiiiiiiii i, 191
Table 7.2 Summary of Training Condition Effect.................l 193
Table 7.3 Summary of Seen Status Effect...........ccccoiiiiiiiiiiiiiiiiiii, 203
Table 7.4 ANOVA Tables ... e 221
X

LIST OF ILLUSTRATIONS

Figure 2.1 General ITS Architectureoooviiiiiiiiiir i 11
Figure 3.1 Major Components of Instructional System...........ccccoeeiiiiiiiiiiiiininn... 25
Figure 3.2 Summary of Knowledge Components.........cccoooceeviniiiniiiinneennnnnnn.. 29
Figure 3.3 Summary of Knowledge Organization inan ITS...................... ... 44
Figure 4.1 Steam Generation Phase ... e 47
Figure 4.2 Steam Expansion or Power Generation Phase.................................... 48
Figure 4.3 Power Generation Phasecoooiiiiiiiiiiiiiiii it 50
Figure 4.4 Feed Phasecooiiiiiiiiiiiiiiiiiiiiii e it e aan e 51
Figure 4.5 System Hierarchy........ ..ottt i e it 57
Figure 4.6 System Knowledge Decomposition.................ooiiiiiiiiiiiiiiiiiiin.a, 61
Figure 4.7 Interacting Subsystems of Marine Power Plant.................................. 63
Figure 4.8a Instructional Template to Suggest Hypothesis Revision....................... !
Figure 4.8b Instructional Template to Indicate Lack of Evidence !
Figure 4.8¢ Instructional Template to Suggest Diagnostic Test to Strengthenor
Weaken a Hypothesist e e e 72
Figure 4.8d Instructional Template to Express Inability to Provide Help.................. 72
Figure 4.9 Primitive Class Hierarchyc..o i 95
Figure 4.10 Control Architecture..........ccooviiiiiiiiii i e i 118
Figure 5.1 Configuration of Sereens......c..uvuriiieiiiii it 130
Figure 5.2 Schematic Menu..........ooiiiiiiiiiiiiiii et e 132
Figure 5.3 Requests Menu.........ccocoiiiiiiiiiiiiii e 132
Figure 5.4 Tutor Dialogo i e e 134
Figure 5.5 Symptom Dialog...... ... 134
Figure 5.6a Steam Schematic............oiiiiiiiiiiii e 136
Figure 5.6b Boiler Schematic........ ...t e 137
Figure 5.6c Feed Water Schematic.........coooiiiiiiiiiiiiiiiiiiiici e, .138
Figure 5.6d Fuel Oil Schematiccooiiiiiiiii i 139
Figure 5.6e Control Air Schematic.........c.ooiiiiiiiiiiiiiii i e e e eeenn, 140
Figure 5.6f Saltwater Schematicccoviiiiiiiiiiii i e 141

x1i

Figure 5.6g Lube Oil Schematic.............oooiiiiiiii e
Figure 5.7 Qualitative State Representation..............ccoviiiiiiiiiiiiiiiiiiiainaanen,
Figure 5.8 Boiler Schematic Showing Gauges on the Steam Drum..........................
Figure 5.9 Tutor's Instructions to Select the Suspected Component.........................
Figure 5.10 Message of Congratulations on Correct Diagnosis.............................
Figure 5.11 Error Dialog for Incorrect Diagnosis.........ccccooiivioviiiiiieveninrniinnnnns
Figure 5.12 Help-Levels Dialog..... ...t ee e et
Figure 5.13 Help-Levels Dialog with "System” Buttons Enabled...........................
Figure 5.14 Passive Tutor Dialog to Select Subsystem.....................co
Figure 5.15 Passive Tutor Dialog to Access Subsystem Related Knowledge...............
Figure 5.16 Passive Tutor Dialog to Display Selected Subsystem...........................
Figure 5.17 Combustion Subsystem Highlighted in Boiler Schematic......................
Figure 5.18 Summary of Interactions with Passive Tutor Dialogs to Access System

K oWledge ..ot e e
Figure 5.19 Passive Tutor Dialog to Display Failure Mode Knowledge....................
Figure 5.20 Summary of Interactions with Passive Tutor Dialogs to Access Failure

Knowledge .. .coooiiiiiiii i e e e
Figure 5.21 Clipboard.ottt e e e
Figure 5.22 Extended Portion of the Clipboard..............ccooviiiiiiiiiii i,
Figure 5.23 Clipboard Indicating Change in Gauge Reading...............................
Figure 5.24 Clipboard Indicating Blocked-Shut Mode of Failure
Figure 5.25 Examples of Instructions from Vyasa.................oooi i,
Figure 5.26 Tutor Soliciting Hypotheses from the Student
Figure 5.27 Student Communicating the Suspected Mode of Failure.......................
Figure 5.28 Example of Hypothesis Aiding with Intervention.......................ccc....
Figure 5.29 Hypothesis Menu...... ..ot e
Figure 5.30 Review Hypotheses Dialog.............cooiiiiiiiiiiiii i
Figure 5.31 Delete Hypothesis Dialog.......ccoooiiiiniiiiiiiiiiiieieeeeiee
Figure 5.32 Advice Hypothesis Dialog.........cocooiiiiiiiiiiiiiiiiiiie
Figure 5.33 Example of Hypothesis Aiding without Intervention...........................
Figure 5.34 Dialog to Request Solution i
Figure 5.35 Solution for Studenis Trained on Simulator.....................................
Figure 5.36 Solution for Students Aided by the Tutor...........cccoccccevviiiiiinnnnnnnn...
Figure 5.37 Explanations for Abnormal System Behavior............cccccceeiiiiinnn.

Figure 7.1 Number of problems solved (training condition effect) 196
Figure 7.2 Average troubleshooting time per problem (training condition effect)........ 195
Figure 7.3 Number of informative actions (training condition effect)..................... 197
Figure 7.4 Percentage of relevant informative actions (training condition effect)...... 197
Figure 7.5 Percentage of guesses (training condition effect)................................ 199
Figure 7.6 Number of investigations in unaffected schematics/subsystems/fluid-

paths (training condition effect)ccoiiiiiiiiiiiiiiiii i e 199
Figure 7.7 Nature of diagnosis (seen status effect)..........cccccciiiiiiiinniiiiiiiinnneneen. 201
Figure 7.8 Number of problems solved (seen status effect).....................coeeiiiiiiiin. 204
Figure 7.9 Average troubleshooting time per problem (seen status effect).................. 204
Figure 7.10 Number of informative actions (seen status effect)............................. 206
Figure 7.11 Percentage of relevant informative actions (seen status effect)............... 206
Figure 7.12 Percentage of guesses (seen statuseffect)................................... 206
Figure 7.13 Number of investigations in unaffected schematics/subsystems/fluid-

paths (seen status effect).ot e 208
Figure 7.14 Nature of diagnosis (seen status effect) 208
Figure 7.15 Number of problems solved (interaction effect)......................c.ooo ool 210
Figure 7.16 Average troubleshooting time per problem (interaction effect)................ 210
Figure 7.17 Number of informative actions (interaction effect)............................ 21
Figure 7.18 Percentage of relevant informative actions (interaction effect).............. 211
Figure 7.19 Percentage of guesses (interaction effect)...........ccccooiiiiiiiiiiiiiiiinne. 211

Figure 7.20 Number of investigations in unaffected schematics (interaction effect) 212
Figure 7.21 Number of investigations in unaffected subsystems (interaction effect)....212
Figure 7.22 Number of investigations in unaffected fluid-paths (interaction effect)..... 212

Figure 7.23 Number of premature diagnosis (interaction effect) 213

Figure 7.24 Number of timely diagnosis (interaction effect)................................ 23

Figure 7.25 Number of overdue diagnosis (interaction effect) 213
xiii

SUMMARY

One of the major problem solving skills required of human supervisory controllers
concerns their ability to diagnose faults. Training for diagnostic problem solving is
currently either provided on-the-job or on simulators. While on-the-job training has many
problems, training on simulators alone is also inadequate. Many researchers feel that a

simulator coupled with an intelligent computer-based tutor can provide better training.

The concept of using computers as training aids is not new. But, research in intelligent
tutoring and training systems has traditionally focused on relatively simple tasks. Useful
results and techniques established through previous research have, therefore, not been
successfully applied to complex engineering systems. This research is aimed at
overcoming some of the difficulties in extending the applications of computer-based

training systems to complex engineering domains.

This research focuses on developing a methodology for decomposing, organizing and
representing domain knowledge of complex dynamic systems for building functional
computer-based intelligent tutors. In addition to developing a knowledge organization
methodology, the research proposes, implements and evaluates a coherent architecture for
constructing intelligent instructional systems. The results of the research demonstrate the

viability of using computers to train operators to troubleshoot large engineering systems.

xiv

CHAPTER 1

INTRODUCTION

Background: Diagnostic Problem Solving

In the operation of complex dynamic systems such as aircrafts and power plants, vast
quantities of information must be processed promptly to maintain desirable levels of
system performance. Various subsystems of a complex system generate a large amount of
information. This information about the system state must be combined with external
inputs from the environment and processed promptly. Even though computers and
automatic control systems are generally employed to process information in real time,
complete automation based on fully autonomous systems is not possible. Human presence
is still required to set high level system goals, monitor system states, and intervene and
compensate for problems that the automated control systems are unable to handle. Thus,
supervisory control of complex dynamic systems requires monitoring, planning and other
problem solving skills (Rasmussen, 1986; Woods, 1986; Wickens, 1984; Rouse, 1982;
Sheridan and Johannsen, 1976).

One of the major problem solving skills required of human supervisory controllers
concerns their ability to diagnose faults. Fault diagnosis usually involves the
identification of the primary cause of abnormal system behavior. It is the process of
identifying malfunctioning components by observing abnormal states of the system,
forming hypotheses about failure, and verifying each hypothesis by conducting diagnostic

tests.

The diagnostic problem solving task in modern engineering systems is often complicated
by the size, interactions and dynamics of the system. Size refers to the number of
components in the system. An increase in size increases the probability of failure in the
system and makes troubleshooting difficult by increasing the alternatives that can

explain the abnormal system behavior. Interaction between parts of the system makes

diagnosing faults difficult due to the increased information processing load on the
operator. In addition, the diagnostic process is complicated by the propagation of abnormal
system behavior. Therefore, timely intervention by the operator and appropriate actions

are necessary.

Successtul fault diagnosis in engineering systems depends upon the operator's use of
system knowledge at multiple levels of abstraction and detail (Rasmussen, 1985).
Efficiency in diagnostic problem solving is enhanced by timely compilation, integration
and organization of appropriate pieces of operational information about the components

and the system.

However, even when operators are familiar with the system operation, they are sometimes
unable to combine symptom information with mental resources concerning system
knowledge during troubleshooting (Govindaraj, 1988). Operators need to be trained to
overcome the problems related to cognitive aspects of diagnostic problem solving. An
operator training program that helps organize system knowledge and operational
information, including symptom-cause relationships, is therefore essential to ensure

competent performance.

Training for Diagnostic Problem Solving

Training for diagnostic problem solving is either provided on-the-job or on simulators
(Johnson, 1988; Kearsley, 1987; Goldstein, 1986; Naval Training Command, 1973; Bureau
of Naval Personnel, 1963). On-the-job training has many problems. First, it is usually
very expensive. Second, the consequences of an error can be catastrophic. Finally,
malfunctions occur infrequently and it may be undesirable or impossible to duplicate them
during training. Systems that can simulate a wide range of failure conditions offer a good
alternative training environment. However, simulators by themselves are unable to
provide appropriate help since they do not have the ability to evaluate a student's
misconceptions from observed actions. A simulator coupled with an intelligent computer-
based tutor may, however, improve training effectiveness. Such a combination of

simulator and tutor constitutes an intelligent tutoring system (ITS).

The concept of using computers as training aids is not new. But, research in intelligent

tutoring and training systems has traditionally focused on relatively simple tasks

concerned with imparting basic skills in mathematics, electricity, physics and computer
programming (Wenger, 1987; Sleeman and Brown, 1982). While these domains have been
useful for exploring research ideas, they are characterized by the absence of complex
interactions between subsystems that are present in most engineering domains. Because
of this inability to represent complexity, most ITS design principles have not been
successfully extended from simpler, less constrained domains to complex engineering
systems (Burns et al., 1991; Frasson et al., 1990; Psotka et al., 1988). A good part of this
inability to represent complexity stems from the lack of a methodology to decompose and

organize knowledge about large dynamic systems.

Research Objectives

Inspite of useful results and techniques established through previous ITS research, not
much progress has been made in applying the findings in a functional engineering
system. This research is aimed at overcoming some of the difficulties in extending the

application of computer-based training systems to complex engineering domains.

This research focuses on developing a methodology for decomposing, organizing and
representing domain knowledge of complex dynamic systems for building functional,
computer-based intelligent tutors. In addition to developing a knowledge organization
methodology, the research objectives include developing, implementing and evaluating a
coherent architecture for constructing intelligent instructional systems. The viability of
using computers to train operators to troubleshoot large engineering systems will be

demonstrated as a result of this research.

Proposed Methodology

The framework for knowledge decomposition and organization proposed here for
representing knowledge in intelligent tutors is based on an ITS architecture that separates
domain knowledge from pedagogical knowledge. This framework suggests the
decomposition of domain knowledge into system and task knowledge, and decomposition
of the pedagogical knowledge into knowledge to plan and execute the pedagogical functions

of the tutor that includes evaluation and rectification of misconceptions.

The proposed framework organizes system knowledge using a structure-function-
behavior model of the system and its components. It organizes task knowledge in a
manner that facilitates evaluation of student misconceptions. The organization of
pedagogical knowledge proposed by this framework facilitates planning of pedagogical
functions including inference of misconceptions and delivery of instructions using a

blackboard-like control architecture.

Scope

The application of the knowledge organization methodology and the intelligent tutoring
system architecture proposed in this research are limited to a class of complex domains
and tasks. It is important to recognize the salient characteristics of the domain and the
task that make them suitable for the knowledge decomposition and organization scheme of
the proposed framework. These salient characteristics of the domain and task are

described next to give some idea about the applicability and scope of this research.

Domain Characteristics

The methodology for decomposing, organizing and representing knowledge proposed in
this dissertation is suitable for engineering domains (e.g., power plants, aircrafts,
automobiles etc.) that are characterized by complexities such as size, high degree of .
interaction between subsystems and dynamics. In addition, these domains typically
exhibit slow response to changes in the control settings. Furthermore, these systems
seldom attain steady state. Even when steady state values are attained, it may take a long

time to do so.

Also, most control operations in such complex dynamic systems are automated and human
intervention becomes necessary only when the system exhibits abnormal behavior.
Malfunctioning components responsible for abnormal system behavior cause the
performance of the system to deteriorate progressively but seldom do they cause
catastrophic situations. However, effects of failure can propagate to many interconnected
portions of the system. Even components that are not physically connected to the failed
component may be affected. Therefore, even a single fault can lead to a catastrophic

situation due to cascading of failures.

Task Characteristics

Knowledge organization for intelligent tutoring proposed here is best suited for a
diagnostic problem solving task that supervisory controllers of complex dynamic systems
are often required to perform. The diagnostic task involves identification of a
malfunctioning component in the system that is responsible for observed abnormal system
behavior. In addition, the supervisory control task generally includes repair or
replacement of the faulty component as well. In this research, the emphasis is on the
identification of the failed component because it is a pre requisite for repair and

replacement.

There are several characteristics of the troubleshooting task considered in this research.
First, since the troubleshooting task involves identification of a failure that is usually not
catastrophic, the task is not severely constrained by time. Second, since the time constraint
is not severe, well defined mandatory procedures for identifying faults do not exist. Third,
due to dynamics of the system, the cause-effect associations are time dependent and
abnormal system states cannot be associated with specific failures without reference to a
point in time. Furthermore, since steady state conditions often do not even exist, it becomes
impossible to uniquely associate abnormal system behavior to specific faults. Therefore,
operators have to depend upon their ability to successfully prune various alternatives before
diagnosing the fault. Finally, limited availability of the gauges constrains the operators
from observing all abnormal system behaviors. Thus, effective utilization of diagnostic

information available is important for successful fault diagnosis.

Implementation

An important element of this research endeavor is the implementation of the proposed
knowledge organization methodology to develop an experimental instructional system.
The purpose of developing the instructional system was to validate the proposed ITS
architecture and to demonstrate the viability of using computers for training in diagnostic
problem solving. The domain of this experimental instructional system is a marine power
plant. The instructional system comprises of a simulator and a tutor. The simulator is
capable of simulating large number of failure situations and provides the training
environment. The task of the tutor is to improve the student's troubleshooting skills in

addition to providing practice and exposure to realistic situations. Knowledge

ot

organization based on structure-function-behavior is used for both the simulator and the

tutor.

Validation

Another important element of this research is the experiment that was conducted to
evaluate the proposed ITS architecture. The experiment involved comparing the
performance of subjects trained with and without the tutoring system. The experimental
results demonstrate that training on simulator alone is inadequate. However, a simulator
coupled with an intelligent computer-based tutor can enhance diagnostic problem solving
performance. The data also indicate that the strategies developed by those aided by the tutor
are different from those trained without the tutor. While the strategy used by those trained
by the simulator relies heavily on pattern matching to recognize familiar cause-effect
associations, the strategy developed by those trained with the tutor in more coherent and
involves formulation of hypotheses and systematic elimination of less likely alternatives
based on observed abnormal behavior. In addition, there is some evidence to suggest that

training received from the tutor is better transferred to unfamiliar situations.

Organization of Dissertation

The purpose of this chapter was to provide a synopsis of the diagnostic problem solving task
in complex dynamic domains, discuss the issues related to training human operators for
this task and present the research objectives. This chapter also provided an overview of the
research, its applicability and results. The remaining chapters of this dissertation

describe the different phases of the research activity in more detail.

Chapter II provides a review of the general architecture of intelligent instructional systems
for diagnostic problem solving in complex dynamic domains. The major constituents of
the ITS architecture are described. The problem in extending the existing ideas to a wider

spectrum of domains and the goals of current research are also discussed.

Chapter III proposes a methodology for organizing knowledge in intelligent tutors for
diagnostic problem solving in complex dynamic domains. An instructional system

architecture that uses this methodology is also described.

An implementation of the proposed instructional system architecture is described in
Chapter IV. Implementation details of an intelligent training system to train operators to

troubleshoot an oil-fired, steam propelled, marine power plant are described.

The student-tutor interface of the training system is described in Chapter V. Details of

interaction at the interface are also discussed.

An experiment to study the effectiveness of the training system is described in Chapter VI.

The purpose of this study was to validate the instructional system architecture.

The results of the experiment are presented in Chapter VII. Performance of subjects

trained with and without the tutoring system are compared.

Finally, a summary of the results of this research are presented in Chapter VIII. Some

recommendations for further research are also discussed.

CHAPTER 11

INTELLIGENT TUTORING IN COMPLEX SYSTEMS

Brief Review of Relevant Research

Although work on intelligent tutoring systems has been in progress for over two decades,
computer power and developments in ITS research have not been sufficiently harnessed
for application in complex, dynamic engineering domains. Sleeman and Brown (1982),
Wenger (1987), Psotka et al. (1988), Frasson et al. (1990) and Burns et al. (1991) provide
extensive surveys of existing intelligent tutoring systems of which only a few deal with
engineering domains. Some examples of these systems that have useful applications in an

operator training program are briefly discussed below.

SOPHIE (Brown et al., 1982) was perhaps one of the first applications of ITS in an
engineering domain. It was built to teach troubleshooting in electrical circuits. Work on
SOPHIE started in the 1970s and its development was carried out in three phases. In the
first phase, an electronic troubleshooting expert was developed that could critique student's
diagnostic problem solving performance on a simulator. In the second phase, the
capability of the expert troubleshooter was enhanced to solve arbitrary faults introduced by
the student. Finally, in the third phase, SOPHIE was equipped with a more powerful

reasoner.

Since SOPHIE, a great deal of progress has been made in computer-based training for
electronic troubleshooting. SHERLOCK" (Lajoie et al., 1990; Lesgold, 1990a; Lesgold,
1990b; Lesgold et al., in press), developed recently for a complex electronic troubleshooting
job in the Air Force, has a far richer representation of the work environment than
SOPHIE. It provides students with realistic means of practicing the task with context-

specific support and feedback. Instead of imposing a particular troubleshooting strategy it

* (includes the entire SHERLOCK family)

provides help that is relevant to the current performance of the students when an impasse is
reached. In addition, a model of the student’s competence and performance gives

SHERLOCK the capability to provide personalized instructions.

In domains such as power plants, ITS research on operator training has produced
STEAMER (Hollan et al., 1984), The Recovery Boiler Tutor (Woolf et al., 1986), and AHAB
(Fath, 1987; Fath et al., 1990). STEAMER does not teach any specific task. Instead, it uses
innovative graphical techniques to display the behavior of portions of the power plant.
STEAMER has neither means to evaluate the needs of the students nor can it provide help
upon request to improve the student's understanding of the power plant. Thus, it is not
really an intelligent tutoring system although it provides powerful graphical interfaces for

interactive inspection of simulated faults in steam power plants.

The Recovery Boiler Tutor simulates the thermal and chemical processes in the boiler unit
of a power plant. It has knowledge of boiler operating procedures for normal and
emergency situations. The tutor uses this knowledge to teach the steps involved in
controlling the situations arising from emergencies. The tutor also provides the students
with the facility to interact with the simulator and stop the boiler processes to engage in

activities needed to improve the understanding of the system.

AHAB addresses the complexities of a power plant such as size and interactions hetween
subsystems better than any other training system in its domain. Using a Discrete Control
Modeling methodology (Miller, 1985; Mitchell and Miller, 1986) to model the operator's
task, AHAB teaches symptomatic and topographic search strategies (Rasmussen, 1986) to
troubleshoot failures. It provides help to the student in the form of useful context-specific
symptomatic and topographic diagnostic tests and evaluates the performance of the student
based on deviations from the strategy prescribed by its task model.

Another complex domain that has been a target for computer-based training research is
aviation. Intelligent Maintenance Training System (IMTS) provides an interactive
environment for constructing domain-specific simulations and training scenarios
(Towne et al., 1988). It has been used to develop a maintenance training program for SH-3
Helicopter Bladefold System. The Helicopter Bladefold System is a moderately complex,
electrically controlled hydraulic system. The maintenance training program uses
Profile, a generic troubleshooting expert of IMTS, to aid operators improve their diagnostic

performance. The techniques for assessing and supporting the student's performance in

this training program, along with the ones used in SHERLOCK, are the most extensive

among all existing systems.

MACH-III (Massey et al., 1988) is yet another training system for a complex domain. It
will be used to train maintenance operators of HAWK radar systems to troubleshoot
complex electronic devices at tactical installations. It is claimed that this system uses
model-based qualitative reasoning techniques to generate explanations of normal and

faulty radar operations for use in training.

In the field of spacecraft ground control, GT-VITA (Georgia Tech Visual Inspectable Tutor
and Aid) being developed at the Center for Human-Machine Systems Research in Georgia
Tech is likely to have significant impact on the training program for satellite ground
control (Chu, 1991). GT-VITA teaches operations associated with ground control of satellite
missions. The tutor uses GT-POCC (Georgia Tech Payload Operations Control Center) a
real-time simulator of the domain as the training environment (Chu, 1991; Jones, 1991;
Chu et al,, 1991) and OFMspert's architecture (Rubin et al., 1987) to represent and interpret
operator actions. During training, the participation of the tutor in helping the student
understand the various operations and the task is progressively decreased as more actions

indicate that the student is acquiring the knowledge recessary to perform the task.

The purpose of this chapter is to review the architecture of these tutoring systems and
determine the reasons for a slow progress in the development of such applications. The rest
of this chapter is divided into three sections. In the first section, the major constituents of
the instructional system architecture are identified. In the second section, important
characteristics of each constituent are discussed. Finally, in the third section, reasons for

the slow development are outlined and an agenda for this research is presented.

General Architecture of ITS

In general, all intelligent tutering systems have a similar architecture. Figure 2.1
illustrates the major constituents of such a system. The basic ITS architecture is comprised
of an expert module, a student module and an instructional module. In addition, a
simulator provides the training environment. The expert module contains the domain
expertise which is also the knowledge to be taught to the student. The student module

contains a model of the student's current level of competence. The instructional module is

10

Student-Tutor Co.
Interface - —)p| Domain Simulator

Student
Module
Instructional
Module
Expert
Module

Tutor

Figure 2.1 General ITS Architecture

11

designed to sequence instructions and tasks based on the information provided by the
expert and student models. Also, the interface used to communicate knowledge to the
student can be treated as a separate component of these systems. In the next section, each

constituent of the intelligent tutoring system is discussed in further detail.

Characteristics of the Constituents of an ITS

This section describes the five major constituents of an ITS: expert module, student
module, instructional module, the training environmert and the interface. For the expert,
student, and instructional modules, the discussion focuses on the knowledge represented
in each. For the training environment and the interface, the discussion focuses on their

importance in an ITS.

Expert Module

The expert module is the heart of the ITS and provides the domain intelligence and
expertise. The domain knowledge embodied in this module refers to the subject matter as it
relates to the task for which it will be used. It is not limited to procedures for executing the
task and includes material that provides the foundation and justification for the
application of procedures. Thus, domain knowledge is of two types: declarative and
procedural (Anderson, 1988; Charniak and McDermott, 1985; Winston, 1984; Rich, 1983;
and Nilsson, 1980). Whereas declarative knowledge refers to objects in the domain, facts
about them and their ianterrelationship, procedural knowledge refers to set of compiled

rules for executing the task.

Domain knowledge can be decomposed into system and task knowledge. System
knowledge concerns the knowledge about the structure, function and behavior of the system
and its components. Task knowledge includes procedures, facts, and some model of
causation that facilitates reasoning in operator tasks such as troubleshooting. Both system

and task knowledge can be declarative, procedural or both.

System knowledge is an essential component of the operator's domain knowledge. Even
though this knowledge by itself is inadequate to perform the troubleshooting task, it
enhances the troubleshooter's ability to solve problems. Therefore, representation of

system knowledge in an ITS must be explicit and the knowledge must be communicable to

12

the students. It is not adequate to have a representation of the system knowledge that can be
applied to simulate the training environment but cannot be presented in a comprehensible
form to the student.

Likewise, the representation of task knowledge in an ITS must be explicit. In addition, this
representation should be human-like (Clancey, 1987). This is important not only because
the knowledge has to be communicated for comprehension by a human but also because this
type of representation is ideal for evaluating misconceptions in a student. If
misconceptions are to be inferred from student's actions, these actions should map to the

representation of the task in the expert module.

Furthermore, the deployment of task knowledge for the purpose of executing the task must
be separable and communicable to the students. When the knowledge representation is
such that it can generate the correct operator responses for a task without being able to
explain the computation of the responses, it is of little use for delivering instructions in an
ITS. On the other hand, when the representation of knowledge underlying the expertise is

articulate and inspectable by the student, it is more amenable to tutoring.

In most existing tutoring systems for complex domains, the domain knowledge is
represented in various forms. For instance, the expert module of SOPHIE (Brown and
Burton, 1975) does not have system knowledge represented in an explicit communicable
form. The task knowledge in SOPHIE was initially not even supported by any model of
causal reasoning and hence could not explain its diagnostic decisions that were computed
by solving mathematical equations. In that form, the expert module was of little help to the
instructional system. Later, however, the program was modified to contain a more

articulate expert that could also explain its diagnostic behavior (Brown et al., 1986).

STEAMER, the interactive simulation-based tutor for propulsion engineering, has system
knowledge expressed as mathematical models of processes in the steam power plant. These
models can simulate the behavior of the system for various settings of control devices.
Manipulation of these control devices is done through an interactive interface. The student
is expected to learn the operation of the power plant by merely observing the changes in the
system behavior for varied control settings. Although a powerful graphical interface is
expected to enhance this learning process, the training system is incapable of explaining
the computation of simulated system behavior to aid the student understand the process
better.

13

The Recovery Boiler Tutor that teaches boiler processes does not support an explicit expert
module. Instead, it has a knowledge base of emergencies and operating conditions
expressed as scenarios. The system knowledge is based on mathematically accurate
formulation of boiler processes that do not represent the mental model that the student is

expected to develop.

Profile, the expert in IMTS, is based on a generic model of diagnostic task. It contains
generalized troubleshooting rules rather than domain specific data. The domain specific
data such as the list of essential context-specific diagnostic tests must be supplied by a
human expert. Using the list of essential tests, Profile can generate useful symptom-cause
data and failure hypotheses. Due to the vast amount of data generated and a large number
of alternatives explored, the performance of Profile is often inefficient. Still, Profile is
perhaps the only expert module that has been used to provide diagnostic support in the

maintenance of many similar systems.

The expert modules of AHAB and SHERLOCK also do not have system knowledge
represented in explicit communicable form. However, they do have rigorous models of the
troubleshooting task for their respective domains. Unlike IMTS, the task models are
extremely domain-specific. They use context-specific knowledge to quickly narrow the
problem space to a manageable number of possible malfunctions that may be responsible

for the abnormal system behavior.

Thus, in most instructional systems in which the system knowledge is represented, it is
expressed in a mathematical form. While this type of representation is suitable for
computing the system states, it is not necessarily suitable for helping students build
appronriate mental models of the processes in a complex system. An alternative
representation is required that goes beyond the non-causal framework of mathematical
equations and helps the students to understand the structure, function and behavior of the

system and its components.

Similarly, alternative methods of representing task knowledge are desirable. Task
knowledge, when expressed as procedures, overly constrains the activities of the student
and forces the training systems to impose a single troubleshooting strategy on the student.
This results in ineffective training, particularly for non-procedural troubleshooting tasks

that cannot be learned by rote alone. For such tasks, the tutor needs a representation of the

14

task that can help evaluate the relevance or importance of a diagnostic test at any instant.
Using such a representation, the tutor can emphasize the effective utilization of diagnostic

data instead of imposing a normative strategy when none exists.

Student Module

A student module in an ITS maintains a model of the student's current understanding of
the domain. The student model is used to evaluate the student's need and help the
instructional module in preparing appropriate individualized instructions. It stores
actions taken by the student and has some means of representing the student’'s knowledge
derived from recorded actions. Representation of data in such a student model must
facilitate its comparison with the expert model of the task to enable evaluation of

misconceptions in the student.

A variety of student modeling techniques have been used in tutoring systems. Most of these
techniques fall under two categories depending upon the type of student model they use;

overlay models and buggy models.

Overlay models consider the student knowledge as a subset of expert knowledge. Any
missing or incorrect student knowledge is identified by overlay models but no explanation
is provided for these inadequacies. GUTDON (Clancey, 1987), a tutor for diagnosing and

prescribing therapy for infectious diseases, uses an overlay model.

Buggy models, on the other hand, have knowledge about errors and can provide
explanations for incorrect behavior of the student. DEBUGGY (Burton, 1982), a program

that teaches multi-digit subtraction, uses such a model to explain causes of student errors.

Student modeling in ITSs for complex dynamic domains has been very limited. SOPHIE
has no student model. The student model in STEAMER merely records the engineering
principles demonstrated to the student. In The Recovery Boiler Tutor, the student model
only records the actions carried out by the student and identifies them as correct or

incorrect

IMTS and SHERLOCK have better and more extensive models of the student. They model
the student at multiple levels. They measure competence as well as performance of the

student using overlay models consisting of predetermined goals. For each of these goals,

15

the level of capability of the student is recorded. In addition, IMTS maintains a fairly
elaborate representation of the student's conceptual model of the system which is a subset of

a normative model of an expert.

AHAB too has an overlay model and is supported by an additional buggy-type error model
of the student. The overlay model is derived from the structure of the task model. The task
knowledge of the student is evaluated by comparing the student's actions to the actions
prescribed by the task model. The error model categorizes incorrect student actions into
types of error that relate to inadequacies in the student's conceptual knowledge of the
troubleshooting task. Instructions are generated depending upon the inadequacies in the

student's conceptual knowledge as determined by the error model.

Instructional Module

The instructional module of an ITS is responsible for several activities. Its primary
function is to control the curriculum, that is, select the material to be presented and its form
of presentation. In addition, the instructional module evaluates student's misconceptions
based on observed actions. To achieve these objectives, the instructional module makes use
of pedagogical rules pertaining to presentation methods, query response and conditions for
tutorial intervention. It also incorporates an algorithm that facilitates comparison of
knowledge in the expert and student models and a framework for evaluating

misconceptions based on this comparison.

In general, the instructional module adds to the instructional system's ability to teach a
task that cannot be done efficiently by merely presenting problem situations on a
simulator. Instructional modules try to enhance learning by providing help to the students
in more than one way. Burton (1988) has categorized the various forms of help provided by
instructional modules as: help, assistance, empowering tools, reactive help, modeling,
coaching and tutoring. Help involves providing advice on request. Assistance is helping
by doing part of the task. Empowering tools aid learning by reifying the problem solving
process. Reactive help is responding to student’s action in a manner that extends the
understanding of the implications of actions. Modeling involves displaying how an expert
executes the task. Coaching involves providing suggestions without adapting to the needs
of the student. Tutoring is when the instructional module adapts to the individual needs of

the students.

16

The form of help and the instructional strategies used by the instructional modules of most
ITSs depend upon the pedagogical philesophy adopted by the instructional system.
However, the strategies that have been effective in one domain may not necessarily be
equally effective in another. For instance, the instructional strategies that have been
successfully implemented in static domains are not applicable to dynamic systems
(Munro et al., 1985). The timing of feedback, for example, is much more important when
interacting with dynamic systems because the relevance of feedback is established with
respect to states of the system that are continuously changing in a dynamic environment.
When the feedback timing is incorrect, the instructions are less effective. In most
instructional systems, it is not easy to incorporate changes in instructional strategies.
Only RAPIDS (Towne et al., 1990), an authoring tool for planning instructions, facilitates

building systems with instructional strategies amenable to quick changes.

Existing ITSs for training in complex domains have a loosely structured instructional
module that serves its limited purpose in specific domains. These instructional systems
make a feeble attempt at incorporating an instructional module that controls the
curriculum and evaluates misconceptions. Most of these systems merely depend upon the
knowledge in the expert module for teaching purposes without adapting to the individual
needs of the student. Although this is an active area for research, evidence of
implementation of research results or their effectiveness is hardly visible in the existing

systems for training in complex dynamic domains.

Training Simulator

In complex real world systems, it is often impossible to generate situations merely for the
purpose of training. Therefore, inspite of being costly and labor extensive, simulators
provide the only practical alternative for any training program. Although simulators
have, in the past, been used alone to provide instructions (Towne, 1986), these simulators by
themselves lack the ability to evaluate student misconceptions. However, these simulators
are an important part of any training program and, when coupled with computer-based

tutors, enhance the effectiveness of an instructional system.

Simulator-based training, as opposed to text book learning, is more effective as it
encourages students to explore and rapidly gather experience that cannot possibly be
acquired otherwise (Sleeman and Brown, 1982). Simulation-based training is all the more

useful for dynamic systems. It allows the student to learn by observing the effects of control

17

actions without the fear of safety hazards. It also allows the student to visualize the effects of

failure propagation due to system dynamics.

However, not all training systems in dynamic domains actually simulate system
dynamics. In some domains such as electronics, a troubleshooting task rarely involves
investigation of transient behavior of the circuit. Steady state values are sufficient to
diagnose the fault. For such domains, system dynamics may not be important. Therefore,

training systems like SOPHIE and SHERLOCK can do without a dynamic simulator.

In domains where transient system behavior has a large amount of diagnostic
information or where sometimes steady state may not even exist, real-time system
dynamics cannot, however, be ignored. While this is true of most mechanical systems,
most training systems including the Helicopter Bladefold maintenance training system
built with IMTS, ignore real-time system dynamics. In the bladefold maintenance
training system, the states of the simulated system attain a steady state value soon after the
introduction of a malfunction. Although the state changes that occur over time in response
to student actions are appropriately modeled and incorporated, the real-time dynamics is

not faithfully represented.

In contrast to the systems discussed above, PEQUOD, the marine power plant simulator of
AHAB, models the transient behavior of the malfunctioning power plant although it does
not allow the controls of the system to be manipulated by the student. Hence, changes over

time in response to student actions are not modeled.

Interface

A good interface makes the knowledge of the tutor transparent to the student and helps the
student understand the complex structure, function, and behavior of the controlled system.
In addition, a well desizned interface addresses the external-internal task mapping
problem (Moran, 1983) and establishes a semantic link between the actions relevant to the
task in the domain and the actions to be taken at the interface (Miller, 1988).

Among the training systems for complex dynamic systems, STEAMER has best utilized

the power of graphics and icons. Using interactive graphical interface, iconic

representations and flow animation, STEAMER demonstrates the functioning of a

18

simulated power plant and various properties of its operation unlike any other system of its
kind.

IMTS and SHERLOCK both use direct manipulation interfaces where all student actions
involve selecting an item and clicking on it using a mouse. In both these systems there is a
good mapping between the actions taken at the interface and the actions relevant to the task
in the domain. Objects that are manipulable by the operator in the domain are also

manipulable at the interface.

AHAB too has a direct manipulation user interface. However, unlike IMTS and
SHERLOCK, no control devices can be manipulated by the student. The student uses direct
manipulation techniques to switch between screens and pick components to investigate its

gauges.

This concludes a discussion of the five major constituents of an instructional system for i
training operators of complex dynamic systems. The next section describes the difficulties
associated with extending and implementing ideas from existing systems to a wider

range of complex domains. It also sets the agenda for the research.

Problems and Research Objective

Why the Slow Progress?

From the review of existing systers it is clear that despite the fact that all ITSs share a
more or less common structure, implementing a computer-based training program for
operators of complex real-world systems continues to remain a complicated exercise.
Clearly, something more than the top-level modular architecture or the underlying
computational machinery appears to be responsible for the slow pace of progress. Two
reasons for the slow progress in implementation of computer-based training programs can
be identified.

The first recson is the lack of appropriate simulation techniques. Intelligent training
systems need a domain simulator of at least moderate levels of dynamic, structural and
temporal fidelity (Su, 1985). For most real-world systems, due to their shear size and

complexity of processes and interactions involved, developing such a training

19

environment is a tedious task. In the absence of an appropriate tool that supports rapid
construction of these training environments, the task of building large simulators is made
even more difficult. Moreover, constructing simulators for large systems using
conventional modeling techniques is computationally expensive. For an ITS which must
conserve its computational resources for the tutor rather than consume it on the simulator,

computer power is of extreme importance.

Shortage of computational resources, however, is not likely to be a problem in the future due
to the rapid pace of advances in computer technology. There is still a need to explore
simulation techniques that can be used for rapid construction of training environments for
instructional systems. If, in addition, the simulation technique can also be employed to
develop simulators which require moderate amount of computational power and yet exhibit
the fidelity suitable for the training program, it will surely enhance the development of

training systems.

The second reason for the slow progress in developing training systems in engineering
domains is the volume of knowledge and its organization. Knowledge in the tutoring
systems needs multiple representation at various levels of detail and abstraction. For most
real-world systems, this makes the volume of knowledge to be represented overwhelming.

Furthermore, this knowledge is interrelated and tightly coupled.

While representing huge volume of knowledge is a problem, the complexity does not
necessarily stem from a lack of knowledge representation methods. Recent advances in
object-oriented programming techniques have provided efficient and economical ways to
store knowledge. They have made knowledge representation for large complex systems in

an ITS relatively less tedious and computationally inexpensive.

But, as knowledge is decomposed for efficient representation, there is concern about the
level of detail that is necessary and adequate for achieving the pedagogical goals.
Moreover, since the knowledge to be represented in the instructional system is highly
interrelated, it cannot be stored as isolated modules. Knowledge must be integrated into
proper contexts and mental models that can be easily recognized and comprehended.
Inability to achieve this knowledge integration is precisely what is lacking in the ITS
technology. A framework that can help integrate the large volume of knowledge associated

with the safe operation of real-world systems is, therefore, needed.

The effectiveness of the existing training programs has also suffered due to a lack of
technology supporting the development of interactive interfaces. However, advances in
graphics, animation and direct manipulation interface designs in recent years have now
made it possible to develop creative interface ideas on various computational platforms.
These technologies need to be explored further to improve the methods of knowledge

communication between a computer-based tutor and a student.

Research Agenda

The issues raised in the preceding section open up several avenues for further research in
the field of intelligent tutoring systems. The research being reported here endeavors to
address some of the issues and seeks to reduce the difficulties associated with the

construction of intelligent t* wning systems.

The objective of thi< iesearch is to reinforce the technology of developing instructional
systems for surervisory controllers of complex systems with appropriate tools.
Specificallv, the research focuses on developing a methodology for decomposing,
organizing and representing system and task knowledge of a large complex dynamic

system.

The research has four goals. The first goal is to identify a suitable modeling technique for
building simulators of moderate fidelity for training programs. The second goal is to
propose a methodology for organizing knowledge of complex dynamic systems for use in
intelligent instructional systems. The third goal is to implement the proposed methodology
in a coherent ITS architecture to develop a training program for operators of complex
dynamic systems. The final goal is to experimentally demonstrate the effectiveness of the

instructional system developed through the proposed architecture.

Although this research is by no means aimed at solving all the issues associated with ITS
research, it is directed at bridging the gap between theory and implementation. This
research provides a pragmatic approach for extending the applications of ITS to real-world
systems. It is expected that the results of this research will stimulate development of better

training programs for supervisory controllers of realistic, complex dynamic systems.

CHAPTER III

SIMULATION AND KNOWLEDGE ORGANIZATION METHODOLOGIES
FOR
INTELLIGENT TUTORS IN COMPLEX DYNAMIC DOMAINS

Review of Research Goals

Successful applications of intelligent tutors for training in the domain of complex
eng'reering systems are scarce. Two possible reasons for their limited applications were
identified in Chapter II. One was the lack of a simulation methodnlogy that prevented
developers from rapidly constructing simulators of desired fidelity with minimum
computational power. The other was the lack of a principled way of organizing the huge
volume of interrelated knowledge into a coherent, feasible architecture for instructional
systems. If more applications of intelligent tutoring systems are to be developed in
engineering domains it would help to explore new simulation techniques and develop a
methodology for organizing knowledge in them. Characteristics of the simulation
technique and knowledge organization that will help the cause of improving the status of

ITS technology are briefly discussed next.

Simulation of Complex Dynamic Systems

Rapid prototyping of a large scale dynamic simulator for training systems is extremely
important. IMTS (Towne et al., 1988) is one of the few systems that provides simulation
tools for constructing large scale simulators of complex systems quickly for training
purposes. It maintains a library of graphical objects created with the help of an editor. The
same editor is also used to specify the object behavior. Equipment specific simulations are
built by interactively assembling the graphical objects. During simuiation, the system
states are computed using the behavioral knowledge of the objects and their graphical

connections.

However, the simulation methodology adopted in IMTS does not capture ths real-time
dynamics of the simulated system. It uses only the steady state values to describe the state
of the dynamic system. Steady state values are adequate for most operator tasks including
diagnosing faults in many complex domains. However, transient state values are
necessary in other real-world domains such as a power plant, where a steady state may not
exist or where troubleshooting for faults begins well before the system attains a steady
state. Thus, simulators for such domains must incorporate knowledge of the system’s
structure, function, and behavior in a manner that facilitates evolution of system states
with time. Furthermore, this knowledge must be available at multiple levels of abstraction
so that the evolution and propagation of system states across interacting subsystems can be
described to the student.

A methodology that facilitates the simulation of large complex dynamic systems with
reduced computational effort is described in this chapter. This methodology is currently
not supported by an interactive user interface that can help build simulations rapidly.
However, in conjunction with an IMTS-like interactive interface, it can serve as a useful

tool for building dynamic simulators.

Knowledge Organization in Intelligent Tutors

Besides the simulator and the knowledge of system dynamics, what really makes the
training system intelligent is the organization of knowledze. Absence of systematic
organization of knowledge adversely affects the effectiveness of a computer-based tutor. In
an effective ITS, the domain knowledge must be separated from teaching knowledge and
made explicit. Having explicit domain knowledge makes it easily accessible and
communicable to the student. Separation of knowledge also makes it possible for the tutor to
present the domain knowledge in more than one way. This allows an ITS to function with

more flexibility and present instructional material in different styles.

For a large, complex, dynamic, real-world system, the problems related to the knowledge
and its representation in an instructional system are two-fold. First, the volume of
knowledge is enormous. Second, its organization is critical for the success of the
instructional system. Both the type and organization of knowledge in an instructional
system also varies with the distribution of teaching and learning responsibility between
the student and the tutor (Rickel, 1989). Tutors that attempt to maintain a balance of control

between the student and the tutor (i.e., mixed-initiative tutors) have the largest amount of

23

L

structured knowledge as compared to tutor-dominated traditional computer-aided
instructional programs or student-dominated discovery learning environments

(Sleeman and Brown, 1982; Wenger, 1987; Psotka et al., 1988).

Thus, a consistent knowledge organization methodology cannot only increase the pace of
progress by cutting down on the development time but also ensure effectiveness of the

instructional system.

This chapter describes a knowledge organization methodology that can be used to develop
effective intelligent tutoring systems to train operators of engineering systems. Details of
the methodology are presented with reference to an ITS architecture proposed for

developing intelligent instructional systems for complex dynamic systems.

An Architecture

This section describes an ITS architecture. Figure 3.1 illustrates the major components of
the instructional system. Together with the simulator and an interactive interface, the
three components of the tutor (i.e., the expert, student, and instructional modules) comprise
the architecture for the instructional system. The instructional system has three major
requirements: (1) a domain simulator; (2) organization of knowledge that supports the
functions of the three major elements of the tutoring system; and (3) an interactive student-

tutor interface.

A complete description of the architecture is provided in the next three sections. The first
section is a discussion of a simulation methodology suited for developing simulator-based
training systems. The second section provides a methodology for decomposing and
systematically organizing knowledge concerning complex dynamic systems. The
framework proposed by this methodology can be used to decompose knowledge into smaller
and easily comprehensible units for use in instructional systems. The third section is a

discussion of interactive interfaces and student-tutor interaction.

Simulator Interface

Domain Simulator

+

Instructional

Module

Tutor

Student
Module

Expert
Module

Figure 3.1 Major Components of Instructional System

Simulation Via Qualitative Approximation

In this section, a qualitative approximation methodology for the design of moderate fidelity
simulators is described. Basic principles of this methodology were developed by
Govindaraj (1987).

In simulators using qualitative approximation, the system states are represented by
qualitative measures such as "pressure low" and "flow rate has been steadily
decreasing”. Exact numerical values are not used. The qualitative state representation
aids the human operator involved in troubleshooting by eliminating the need to compare
observed state values to nominal values. Also, large systems can be simulated with a

moderate amount of computational power due to reduced computational requirements.

The simulator design methodology is based on a hierarchical description of the system.
System components are grouped into a number of subsystems based on their function. For
instance, an oil-fired steam power plant on a ship is comprised of the following primary
subsystems: fuel oil, feed water, steam, lube oil, and control air. Some components might
belong to more than one subsystem. For example, the condenser is part of the feed water
subsystem as well as the steam subsystem. Components are classified into a number of
generic types, which are then broken down into a small number of primitives. A condenser
as well as an economizer, therefore, can be classified as heat-exchangers. This is a rather
simple arrangement or design of the hierarchy based on the physical nature of components

that form the system.

The primitives form the basic units in qualitative approximation. The primitives are the
simplest form of components performing a single operation or a function, e.g., providing a
path for some fluid in the case of a conduit. Primitives defined in this methodology
include: conduit, source, sink, heat exchanger, and resistor. A component such as a
condenser can be broken down into two sets of sources and sinks, gains and conduits, and
a transfer agent. These hierarchical descriptions follow the natural arrangements of

various components and subsystems in the real system.

The most significant part of the modeling process in simulator design is the qualitative
description of the state space. The states are represented as deviations from their nominal
values. This technique, commonly used in modeling dynamic systems, is called the

perturbation approach (Takahashi et al., 1972). The key difference from traditional

2%

applications, however, is that in the simulator design methodology described here, the
perturbed states evolve using approximate functional representations rather than exact

representations of the primitives.

Each of the primitives has a structure and a set of parameter values. The function,
characterized by appropriate differential and algebraic equations, is the same for a
primitive regardless of the component which it represents. Behavior of the primitives are
based on approximate functional equations of system dynamics and parameter values.
The parameter values depend on the component of which a particular primitive is a part.
Parameters associated with the primitives of a component are tuned to maintain temporal

fidelity of state evolution.

System state is updated in a two-step process: during the first step, the states of individual
components are updated; during the second step, the updated states are propagated to
successor components. Numerical values corresponding to deviations from nominal
values are used to represent the states in the simulation. Since these numerical state values
are derived from functionally approximate system equations, they represent system states
only qualitatively. The state values are transformed into qualitative descriptions, e.g.,

pressure low and level high, before presenting them to the operator.

An approximate, qualitative representation of system states enables the simulator built
through this technique to maintain cognitive compatibility with trainees. This is because
the system states computed using qualitative approximation are similar to state
descriptions used by the human (Govindaraj, 1988). Humans often use qualitative
descriptions of system states, e.g., pressure is low and temperature is fluctuating, rather
than specific values, e.g., the pressure is 1150 psi. Therefore, in training simulators, there
is no need for precise numerical state description. Although the simulation evolves
qualitatively, temporal fidelity is maintained since the sequence of state changes that

occurs as a result of an event is the same as it would be in a real system.

Knowledge Organization

Operators of complex dynamic systems, in which interdependent subsystems have some
level of autonomy, must be familiar with operational principles of different types of
system, e.g., thermodynamics and heat transfer for the fuel system, or electrical
characteristics for a turbogenerator. In addition, the operator must know the nominal
values of the state variables and parameters. Problem solving and compensation for
failures require processing of information from various subsystems using efficient
troubleshooting strategies. Therefore, an intelligent tutoring system must be capable of
organizing and presenting knowledge about the system and the troubleshooting task at

several levels of granularity or detail.

Successful implementation of an intelligent tutor for diagnostic problem solving in
complex dynamic domains depends upon the availability of (1) a large amount of system
knowledge organized to facilitate evolution of system states with time, (2) troubleshooting
task knowledge, (3) knowledge to infer a student's possible misconceptions from observed

actions, and (4) pedagogical knowledge to realize the tutoring objectives.

The system knowledge and the troubleshooting strategies constitute an expert model of the
operator's task. It must be organized in a manner that is easily accessible and

communicable to the student. The instructional module uses this model to train students to
use proper diagnostic problem solving strategies. Knowledge of student's actions can help
the instructional module to infer possible misconceptions. Finally, knowledge of tutoring

goals and how they are to be realized guides the instruction and its communication.

The remaining portions of this section describe the framework for decomposing and
organizing knowledge for a computer-based diagnostic problem solving tutor in complex
dynamic domains. Figure 3.2 summarizes the components of knowledge identified by this

framework. Each knowledge constituent is described in detail next.

Summary of Knowledge Components

Domain:

Schematics Structural knowledge

Functional .
i’:{:’:’v’;‘e age sxlxll?s;:t):;s * Components Functional knowledge

Fluid paths Behavioral knowledge

Failure modes

Task
knowledge Schemas of specific failures
(experiential knowledge)
Pedagogical:
Knowledge evaluate actions using domain knowledge
to evaluate
misconceptions infer misconceptions from evaluated actions

to rectify inferred Content

Instructional misconceptions
knowledge Form

to provide help
Time and duration

Figure 3.2 Summary of Knowledge Components

System Knowledge

Successful fault diagnosis in complex dynamic domains is aided by multiple
representations of the system's functional properties (Rasmussen 1986). The expert in a
tutor for a diagnostic problem solving task must therefore have access to multiple
representations of the system knowledge. Schematics, functional subsystems and fluid
paths are three possible means of representing the system knowledge. A schematic is a
pictorial representation of the components in the system. Schematics often graphically
represent subsystems and fluid paths in a system. A functional subsystem is a collection
of components responsible for performing a higher level system function and fluid paths
help in visualizing the system in terms of different fluids that flow through the system.
Thus, the three representations of the system knowledge are complementary rather than
mutually exclusive. A detailed description of system knowledge decomposition into

schematics, functional subsystems and fluid paths is provided next.

Schematics

A schematic presents a view into the structure of the system. Typically, a schematic shows
the sequence in which certain components and the gauges appear in a real system. It is also
a structure that reveals the logical proximity of two physically unconnected components
such as the burner and the stack in a combustion unit. A configuration of all components
either responsible for a higher level function or sharing a common fluid is yet another

example of a schematic.

In diagnostic problem solving tasks on a simulator, schematics are typically used to view
the configuration of components and gauges. Scanning through the various schematics
permits an operator to visualize the sequence of system processes as they occur in the
system. In a steam power plant, for example, the schematics may display the stages of
power generation in a sequence starting with the combustion of fuel, followed by steam
generation, steam condensation and preheating of condensed steam for re-use in a closed
loop water circuit. A collection of schematics provides a convenient interface between the
simulated system and the operator. The operator's interaction with the system during a
troubleshooting task involves probing gauge readings in the suspected areas of failure

through schematics.

Grouping of components in schematics for a tutoring system depends upon some other
factors such as frequency of interaction and level of dependency. There are portions of a
system that commonly interact with each other. For instance, in a power plant, the
performance of steam generation unit is affected by the performance of the combusticn
unit. Hence, the steam generation unit and the combustion unit are displayed in a single
schematic. There are parts of a system which do not significantly affect other portions of
the system and thus are viewed in isolation. For example, problems related to lubrication
are usually confined to lube oil path and rarely affect other fluid paths, unless left
unattended for a long time. Finally, there are some failures in a system that occur more
frequently than others. Components and gauges required for investigating such failures

are confined, as far as possible, to a single schematic.

Functional subsystems

Functional subsystems are collections of components responsible for achieving specific
higher level system functions. There are several higher level system functions that
collectively contribute to the system goals. For instance, in a marine power plant, the
functions are combustion, steam generation, power generation, steam condensation, feed
water preheating, auxiliary steam use, saltwater service, lubrication and control air

distribution.

A functional subsystem is described by information related to (1) fluid paths passing
through the subsystem; (2) components through which a given fluid flows; (3) the order in
which the components and gauges appear in each fluid path; (4) the connected subsystem on

either side of the fluid path; and (5) the schematic in which the subsystem may be found.

Fluid paths

In decomposing a system by fluid paths, all comporients on the same fluid path are
represented in a group. Additional system knowledge based on fluid paths consists of (1)
schematics in which the fluid is found, and (2) the subsystems through which the fluid
flows. Examples of fluid paths in steam power plants are combustion air, fuel oil, flue gas,
superheated steam, desuperheated steam, feed water, condensate, main condenser hot

fluid, main condenser cold fluid, saltwater, lube oil and control air.

Componeits

Each of the three system representations described above involves mechanical components
and gauges. The lowest level of system knowledge description is hence at the component
level. System knowledge at the component level has three attributes: structure, function

and behavior.

A component's structure, for the most part, refers to its connections to other components on
the input and output side, the fluids carried by it, the gauges attached to it, and its
association to a schematic or a functional subsystem. Structural changes in the
components are usually responsible for abnormal behavior of the system. Therefore, the
component level structural description for the failed and normal modes of a component are
different. Functional knowledge about a component is its intended use in the system and
its contribution to the higher level functions of the system. Behavioral knowledge of a
component concerns its states. Since the behavior of a component is different under
normal and failed modes, the behavioral knowledge, like the structural knowledge, is

different for the two modes.

Together, the structural, functional and behavioral knowledge of a system and its
components form an essential part of the expert's knowledge. Structural, functional and

behavioral knowledge are discussed below.

Structural Knowledge

Most of the structural information for components is the same in normal and failed states.
The structural information that remains invariant after a failure includes its
connectivity relationship to other components, the fluids flowing through it, and its
association to a particular subsystem and schematic. When a component fails, some
structural information changes. For example, a valve with its control set to the open
position but its blade stuck in the closed position represents a structural change for a valve
when it is blocked shut. Such structural changes for failed components will be discussed

later as a part of "Troubleshooting knowledge".

Functional Knowledge

Functional information defines the purpose or role of a component in the system.
Functional knowledge of a component depends upon its structure. For example, a pipe in
the system may be modeled as a conduit, where the function of a conduit is to transport
moving fluid from one of its ends to another. In an approximate representation, where
friction may be ignored, it is reasonable to define the function of the conduit in the manner

described above.

In general, a number of primitive function types, like the conduit, can be identified for a
system. All the components of the system can be categorized as instances of one of the
primitive types. For continuous systems, examples of primitives based on functions
include sink, source, source-sink, gain, controller, reactor, transducer, heat-exchanger

and phase-changer.

Behavioral Knowledge

Normal and failed modes of a component affect the system differently. The manner in
which the system state values are affected by the presence of a component, in both the

normal and the failed states, constitutes the component's behavioral knowledge.

Normal behavior of components is responsible for normal state values during system
operation. For example, normal behavior of the main condenser is responsible for a lower
outlet temperature of the hot medium as compared to its inlet temperature. As the hot
medium moves from inlet to outlet it undergoes a phase change from gas to liquid. The
same normal behavior of the main condenser is also responsible for a corresponding
increase in temperature of the cold medium as it flows from its inlet to outlet port. Behavior
of all components can be explained by the laws of science, e.g., the law of conservation of

energy explains the normal behavior described here.

Abnormal behavior describes the manner in which certain state values are affected by a
failure in the component. For tutoring, the behavioral information for a failed component
includes contextual information about specific gauges affected by the failure. The
explanations for the abnormal gauge readings in terms of cause-effect relationships also
form a part of the component’s behavioral knowledge represented in the tutor. Further

details of behavioral knowledge of failed components are discussed in the next section.

3

System knowledge, although essential, is not sufficient for the troubleshooting task.
Troubleshooting knowledge discussed next includes more than the operational knowledge

of the system and its components.

Troubleshooting knowledge

Troubleshooting knowledge combines system knowledge and diagnostic strategies.
Troubleshooting knowledge includes general knowledge of the types of failures in the
system, detailed information on certain common failures, and cause-effect associations
for familiar failures. The nature of this diagnostic problem solving knowledge is

described here.

A mechanical component in a physical system such as a steam power plant can fail in
more than one way. There are four common modes of failure in components: (a) blocked-
shut, (b) stuck-open, (¢) leak-in, and (d) leak-out (Fath et al., 1989). Faults in components
fit one or more of these four mode types. Not all components, however, fail in all four
different ways. Some components have multiple faults that fit the same failure mode
category. For example, a clogged valve or a valve stuck in closed position are two different

ways in which the valve may be blocked-shut.

Each failure mode exhibits a typical system behavior (Fath, 1987; Fath et al., 1990). The
typicality of such behavior provides useful diagnostic information. If the system behavior
suggests a particular mode of failure, then the list of suspected components can be reduced
to those that fail in that particular mode.

The typical system behavior may depend upon the phase of the fluid in the affected path. A
blocked-shut mode of failure in a liquid path, for example, causes the liquid level
downstream to be lower than normal and the level upstream higher than normal. A
similar blocked-shut failure in a gas path, on the other hand, decreases the downstream
gas pressure and increases the upstream pressure. In any case, system behavior
associated with each mode is manifested in the form of a typical pattern of abnormal state
values. Patterns of such abnormal state values can be determined by the application of the
laws of physics and thermodynamics, and recognizing these patterns of abnormalities

during fault diagnosis often helps to identify the type of failure in the system.

System behavior associated with failure mode sometimes deviates from the expected
abnormal behavior (Fath, 1987; Fath et al., 1990). The way in which the system components
are configured is often responsible for such a deviation. For instance, a source-sink such
as a deaerating feed tank located downstream in the blocked-shut feed water path may
prevent further propagation of low feed water level. The deaerating feed tank imposes such
a behavior on the system because it is an "infinite” source of feed water which can at least
temporarily compensate for any loss in the water level. The expected abnormal behavior
associated with a mode of failure may therefore be confined to the vicinity of the failed
component. Furthermore, with the limited availability of gauges around the failed
component, the abnormal behavior may not be observable. Knowledge of such deviations

from the norm is essential for correct identification of the type of failure in the system.

Even when the failure mode is recognized from the system behavior, it may not be very
useful. An expert needs more than just the knowledge about modes of failure and their
associated system behavior. However, when the expert's troubleshooting knowledge also
includes information on all possible modes of failure for each component, it can be helpful

in at least reducing the list of suspected components.

Finally, to isolate the failed from the suspected components and to diagnose the fault,
additional information such as the gauges affected by the failure and causal relationship
between abnormal system states for every fault is required. Knowledge of the affected
gauges and the system states for the individual faults can provide the verification of the

final diagnosis.

There are other elements of the troubleshooting knowledge, accumulated through
experience, that make fault diagnosis in a large complex system time efficient
(Govindaraj and Su, 1988). This experiential knowledge, based on prior cases of solved
and unsolved problems encountered by the operator, is usually responsible for the
formation and rapid refinement of an initial set of hypotheses of either suspected

components, subsystems, or fluid paths.

Experiential knowledge is activated by the observation of obvious and non-obvious (i.e.,
discovered only upon investigation) symptoms. In a complex dynamic system, the size of
the system and the effects of fault propagation make it impossible to uniquely associate a
symptom to a specific fault. However, in such systems, observable symptoms still help to

limit the search for the failed component to a specific location in the system. For example,

b5

the symptoms may indicate that a particular higher level function of the system has been
affected by the fault. This helps to confine the search for the failed component to
components comprising the subsystem responsible for the affected function. Symptoms
may further help to categorize the faults, for example, they may separate those related to
components with moving parts from those related to speed or load. Such a categorization of
failures further reduces the search space for a failed component. For example, a search
space generated by a set of all components with moving parts in the ccmbustion system of a
powcr plant is likely to be much smaller than the set of all components in the combustion

subsystem.

An operator's fault diagnosis task is also aided by inferences based on failure schemas
built through experience. These failure schemas are a part of experiential knowledge. The
schemas represent some of the familiar ways in which the system fails. A schema is
activated by a symptom and proposes a hypothesis or a partial solution to the diagnostic
problem. The partial solution may be a diagnostic test that either provides a conclusive
inference or activates another schema. For example, smoke in a boiler may activate a
schema that recommends checking for smoke color. Black smoke may then trigger an
incomplete-combustion schema while white smoke may trigger an excessive-air-in-the-
burner schema. An abnormal fuel temperature with black smoke in the boiler may prompt
the incomplete-combustion schema to specify desuperheated-steam or fuel path as the path

suspected of containing the failed component.

Rasmussen (1986) has characterized the application of the troubleshooting task knowledge
into two diagnostic strategies: symptomatic and topographic search. Symptomatic search
is a simple and economical pattern matching strategy where a successful association
between cause and effect is generated based on prior experience. An unsuccessful attempt
with symptomatic search usually leads to topographic search. In topographic search, a
hypothesis about the failed component is generated and tested by comparing a model of
normal behavior of the suspected component with its behavior in the abnormally
functioning system. Neither the symptomatic nor the topographic strategy is adequate in
itself; instead, an expert often switches between the two strategies many times to complete
the task.

The discussion here has provided an overview of an expert's troubleshooting knowledge
and the diagnostic strategies. The system and the troubleshooting task knowledge

discussed thus far are also normally the representation of the material to be taught by the

6

tutor. Interestingly however, the knowledge representation suitable for expert performance
is not necessarily suitable for instruction or for evaluating student's misconceptions
(Clancey, 1987). An alternative organization of the expert's task knowledge that may help

evaluate a student's misconceptions is required.

Task Knowledge Organization

An important feature of an intelligent computer-based tutor is its ability to evaluate a
student's miscouceptions. This capability of the tutor evolves from a normative model of
the student's actions. A structure of such a model that can provide the tutor with a capability

to evaluate misconceptions is described below.

In a normative model of the student's actions, not all actions that occur at the student-tutor
interface are valid. Examples of valid actions may range from requests for help to
responses to queries and calls for schematics. In addition, in diagnostic problem solving,
there may be some other actions performed by the student. These actions may include
investigating components for gauges and checking their gauge readings. An action to
investigate a component may be called an investigative action and a request to display the
value of a particular gauge attached to the component an informative action. Most of the
student’s actions, such as the request for help, response to query, call for a change in
schematic display and even investigative actions are self explanatory. These actions
clearly express the intent of a well-motivated learner interacting with the tutor. However,
the informative actions taken during diagnostic problem solving are associated with
ambiguity concerning student's intent. We need context-specific knowledge and an

understanding of the cognitive aspects of troubleshooting task to resolve these ambiguities.

In a troubleshooting task, the student maintains a set of failure hypotheses that explain the
abnormal behavior of the system (Fath 1987; Fath et al., 1990). A set of hypotheses is a list of
components suspected to have failed. Each informative action taken by the student is an

attempt to reduce the size of the set of failure hypotheses.

The manner in which the list of suspected components may be revised depends upon the
outcome of the diagnostic test associated with the informative action. The test results have a
context-specific significance. For example, in a power plant, if the student has been alerted
by a low condensate pressure alarm, it makes sense for him to check the pressure gauge on

the condensate pump. If he does check the pressure gauge on the condensate pump, it is

37

reasonable to assume that the condensate pump is probably one of the suspecied components.
If the pressure gauge shows a low reading, the student has reason to continue suspecting a
malfunction in the condensate pump. On the other hand, if the pressure gauge reading is
normal, the condensate pump may be omitted from the list of suspectcd components.
However, when the student is alerted to a failure in the system by smoke in the boiler rather
than a low condensate pressure alarm, checking for pressure across the condensate pump
is inconsistent with the failure data. Thus, the knowledge of what are reasonable actions
under various failure situations and how the test results ought to refine the set of failure

hypotheses can help in evaluating the student's misconceptions.

A normative model of student's actions that describes the valid actions of a student for each
failure condition can thus be used to evaluate students' misconceptions. The knowledge

required to evaluate misconceptions using the normative model is described next.

Knowledge to Evaluate Misconceptions

The normative model describes what a student ought to do under a particular failure
situation. When the student's action does not match actions suggested by the normative
model, the reason can be attributed to many causes. Usually the causes are related to lack
of knowledge, inappropriate knowledge or deficiencies in knowledge application skills.
Evaluating a student's misconception means determining the probable cause for the
deviant behavior. While suggesting remedies may be relatively straightforward when
misconceptions are known with certainty, determining the misconception itself is a
difficult task.

In order to determine a student's misconception, the tutor needs to know the types of
misconceptions that are associated with ii.complete knowledge of the system or the task.
The proposed method of organizing the system and task knowledge is also helpful in
organizing categories of misconceptions. Misconceptions can be categorized as those
related to a lack of (1) structural knowledge of the system, (2) functional knowledge of
system and components, and (3) knowledge of system behavior resulting from failures.

Identification of each type of misconception is described next in further detail.
The lack of system structural knowledge makes the student investigate portions of the
system unrelated to the failure. For example, if the abnormal system behavior in a power

plant are initially observed in the boiler, the student is expected to investigate gauges

38

mounted on the boiler or on the components in the vicinity of the boiler. If, however, the
student fails to call up the schematic that contains the boiler or struggles to locate it in the

schematic, it can be attributed to inadequate knowledge of system structure.

If, on the other hand, the student calls up the relevant schematic for investigations but
checks components and gauges in the fluid paths unaffected by failure, it indicates a lack
of understanding of different system functions and their inter-relationships. For
instance, if the observed abnormality concerns low water level in the boiler, persistent
investigations along flue gas path is unlikely to yield any useful diagnostic information.
Such an action is clearly an indication of the student's inability to integrate functional

information about the boiler and the interactions between the fluid paths through the boiler.

Finally, pursuing a hypothesis that should have been rejected based on evidence gathered,
or premature elimination of suspicion from a component due to insufficient evidence,
suggests shortcomings in behavioral knowledge related to failures. For example, if the
pressure gauge on the condensate pump displays a normal reading, it is unreasonable to
suspect a blocked-shut mode of failure in the condensate pump. Continued suspicion of a
component in spite of evidence available to the contrary suggests inability on the part of the

student to link failures to abnormal system behavior resulting from failures.

After evaluating a student’'s misconception, an intelligent tutor is also responsible for
generating instructions to rectify the misconception and to improve the student's
diagnostic problem solving skills. The selection of appropriate sets of instructions and

their presentation is guided by pedagogical strategies outlined in the instructional module
of the ITS.

Instructional Strategies

The instructional module of an ITS contains pedagogical knowledge that specifies how the
tutor should respond to various student actions. Many of the instructional modules rely on
a rule-based structure to create instructions (e.g., Clancey, 1987; Burton and Brown, 1982).
More recently, Woolf (1984) and Macmillan et al. (1988) have proposed architectures for
dynamic instructional planners in adaptive environments. However, in any architecture,
the key issues to be addressed are the instructional content, its form and time of

presentation.

Instructional content depends upon the instructional objectives. Several units of
instruction may be available that satisfy these objectives. Selection of a particular unit of
instruction is governed by instructional strategies chosen for the tutor. Such strategies
may, under different situations, include preference for hints or discussion of generalities

as opposed to solutions or discussion of specifics.

Similarly, the form of presentation may be governed by another set of instructional rules.
These rules may specify preference for either graphical or textual mode of presentation
under various situations. These preferences may be based on context or norms formulated

through experience by human instructors.

Finally, time of presentation of the instructional material is equally critical. There are
usually two conditions under which the tutor is expected to deliver instructions. First, when
explicit queries are raised by the student. Second, when a student’s misconception is
identified by the tutor. In the first case, the response should be immediate. In the second
case, the response can be with sr without intervention. Instructions without intervention
are usually provided at the end of a training session. While non-intervention has some
advantages because it does not disturb the student's thought process, intervention at critical
stages of diagnostic activity may be an effective way of emphasizing a point. With respect
to tutorial intervention, both the model tracing approach (Anderson et al., 1985) which calls
for intervention as soon as the student's observed actions stray from the normative actions
and the issue-based tutoring (Burton and Brown, 1982) which encourages intervention at

particular occasions can be usefully implemented.

This concludes the discussion on knowledge organization in intelligent tutors for
diagnostic problem solving in complex dynamic domains. However, knowledge
organization that captures system structure, function, and behavior, troubleshooting task
knowledge, knowledge to evaluate and rectify misconceptions, and instructional
strategies are insufficient for the success of a tutoring system. Properly designed
interactive interfaces also play a major role in imparting knowledge about the system and
its operation during normal and abnormal situations. In the next section, the importance

of such interfaces and how a student interacts with an instructional system are described.

Interactive Interfaces and Student-Tutor Interaction

A good interface is needed to make the knowledge of the tutor transparent to the student and
help the student understand the complex structure, function, and behavior of the controlled
system. In addition, a well designed interface addresses the external-internal task
mapping problem (Moran, 1983) and establishes a semantic link between the actions
relevant to the task in the domain and the actions to be taken at the interface (Miller, 1988).

In a diagnostic problem solving task, a set of schematics often serve as a convenient
student-tutor interface for knowledge communication. These schematics are designed to
minimize the external-internal task mapping problem by having the valves and gauges
that are usually under the control of the student appear as manipulable objects. Other
factors such as grouping of components and graphics also influence the design of these

schematics.

Grouping of components into schematics depends upon the degree of logical proximity
between components and subsystems; the extent of diagnostic actions necessary to
investigate frequent failures; and layouts that ensure smooth transition between
schematics. For example, a high degree of interaction between the steam generation and
combustion subsystem of a power plant requires that the two subsystems be displayed on the
same schematic. Similarly, logically proximate components such as the stack and the
burner in a combustion unit must appear together in a schematic. Also, the connections that
are discontinued on the left edge of one schematic must continue from the right edge of the

connected schematic to maintain visual momentum (Woods, 1984).

Graphics and icons in a schematic interface can enhance the performance of instructional
systems (Hollan et al., 1984). Graphical objects or icons can be effectively used to represent
meaningful objects or concepts of the system. For instance, in engineering, it is customary
to represent a turbine as a trapezoid with the smaller cross section representing the inlet to
the turbine. The trapezoidal shape also reminds the viewer that the steam expands in the
turbine as it moves from a smaller cross section inlet to a larger cross section outlet.
Similarly, concepts such as blocked-shut valve and functional subsystems of a power plant

can also be represented by meaningful icons.

Schematics provide an interface between the student and the simulated system as well as

between the student and the tutor. The tutor uses the schematics to highlight components that

41

constitute a subsystem or share a common fluid path. Such graphical techniques promote
visualization of functional subsystems and their interaction. Schematics can also be used
by the tutor to animate fault propagation by highlighting gauges as they turn abnormal

under simulated failure conditions.

While schematics along with the simulation provide a practice environment that emulates
the real system, they do not cover all aspects of student-tutor interaction. For example, the
students require a set of expressive techniques to state their hypotheses. The tutor, apart
from observing actions, needs a method of seeking information to evaluate
misconceptions. Thus, the tutor interface design also involves developing student- and
tutor-initiated channels of communication. Since the ability of the instructional system to
answer questions is limited by its knowledge and the way this knowledge is organized, the
interface must be designed to control and guide the interaction between the student and the

tutor.

In student-initiated communications, the interface has to assume the responsibility of
guiding the user into asking the right type of questions. For instance, when the student
seeks information concerning the system's structure, function, or behavior, it is helpful to
make the student select appropriate, context-relevant queries from a set of menus. Such
menus, when organized hierarchically, can also reflect the inherent hierarchical
structure of the complex system and promote a better understanding of the system (Miller,
1985). Furthermore, an interface that has the provision to address identical queries via
multiple representations of the system helps consolidate knowledge from multiple

perspectives.

For communications initiated by the tutor, the interface design involves helping the
student to understand and correctly respond to the queries. Where a student can respond to
a query in multiple ways, the student options have to be recognized in advance and the
choice restricted to known alternatives. For example, when the student is asked to provide
hypotheses concerning the most likely mode of failure, it makes sense to confine the
student’'s response to only those modes of failure that are known to the tutor. Therefore,
making the student select from viable alternatives instead of permitting unguided

response is a better approach to interface design.

Summary

An architecture for building intelligent training systems for supervisory controllers in
complex dynamic domains was described in this chapter. First, a simulation methodology
was discussed that can be used to develop dynamic simulators of large engineering
systems at a low computational cost. Next, elements of knowledge were identified that
constitute the expert, student and instructional modules of intelligent training systems in
complex dynamic domains. Organization of this knowledge into various modules of an
ITS architecture was also described. Figure 3.3 summarizes this organization. Finally,
issues related to the design of interactive interfaces for student-tutor interaction were

discussed.

The next chapter describes Turbinia-Vyasa, an implementation of the ITS architecture
discussed in this chapter. This implementation uses qualitative approximation to simulate
its domain; an oil-fired steam-propelled marine power plant. The major components of
this ITS were built using the framework for knowledge organization discussed earlier in

this chapter.

Simulator Interface l

Domain Simulator

/Y

v

* Update
Student Model
* Evaluate

Misconceptions
* Select
Instruction
* Provide Help

Interface

Instructor

<>

Actions

Misconceptions

Student

Knowledge:
System
Task

Expert

Figure 3.3 Summary of Knowledge Organization in an ITS

CHAPTER IV

AN ITS IMPLEMENTATION: TURBINIA-VYASA

The primary goal of this research was the development of a methodology for organizing
knowledge in a diagnostic problem solving tutor for complex, dynamic domains. To
determine the feasibility of the proposed knowledge organization methodology in an actual
training environment, an ITS architecture was developed and implemented. The
implementation consists of a domain simulator, Turbinia® ; and a computer-based tutor,
Vyasa'™ . Together, Turbinia and Vyasa constitute an instructional system that trains
operators to troubleshoot oil-fired steam-driven marine power plants. Implementation

features of the instructionai system are described in this chapter.

This chapter is organized into four major sections: (1) a brief description of the domain; (2)
a description of Turbinia, the domain simulator; (3) a description of the computer-based
tutor, Vyasa; and (4) implementation details of both Turbinia and Vyasa. The description
in sections 2 and 3 covers the organization of knowledge in the instructional system.

Implementation details of knowledge representation are provided in section 4.

* Turbines were used in marine propulsion by Sir Charles Parsons in 1897 in the
Turbinia. It was an experimental vessel of 100 tons, fitted with turbines of 2,100 hp driving
three propeller shafts. Turbinia attained the then record speed of 34.5 knots (Burstal, 1965,
p.340).

** Ancient Indian sage, scholar and teacher

The Domain

Marine Power Plant

The domain of Turbinia-Vyasa is an oil-fired steam-propelled marine power plant. This
power plant is installed on Navy vessels to produce the power required to drive the ship. In
such a power plant, the chemical energy of fossil fuel is converted to thermal energy which
is carried by steam to turbines for transformation into mechanical work. This section

describes the functioning of an oil-fired steam-propelled marine power plant.

The process of producing mechanical work in a steam-propelled marine power plant can
be decomposed into four stages (Gritzen, 1980). Each stage is associated with one of the four
phases in the steam cycle: generation, expansion, condensation and feed. Together, the

four phases of the steam cycle form a closed loop.

Steam Generation

The steam generation phase of the steam cycle takes place in the boiler (Figure 4.1). The
boiler is comprised of tubes and a steam drum. The boiler tubes contain water that is heated
by flue gases resulting from the fuel burned in the furnace. Heat transfer is by conduction
through the tube walls. Heating of water in the tubes produces steam. This steam
accumulates over the water surface in the steam drum and is called saturated steam. The
saturated steam does not contain enough thermal energy to operate the turbines at their best.
efficiency. Thermal energy of steam is increased by passing it through tubes in the section
of the boiler closest to the furnace. This section of the boiler is commonly known as the
superheater. The steam from the superheater 1s at high pressure and is called superheated

steam. The superheated steam then enters the expansion phase of the steam cycle.

Steam Expansion (or Power Generation)

Steam expansion takes place in two steps. First, the superheated steam from the boiler
expands in a high pressure turbine to convert thermal energy to mechanical work. Then,
since the steam still contains a considerable amount of thermal energy, it is expanded
further in a low pressure turbine connected to the exhaust of the high pressure turbine.

Figure 4.2 shows the arrangement of low and high pressure turbines.

Feed Feedwater

. — Economizer

% N

2 A

S

[

—p Drum
— -

=~

2

@

Ed

J: £

g 3

172}
BOILER
Power
Generation <€ Superheater —
Flu#gas
| Fuel-air mixture

Furnace

Figure 4.1 Steam Generation Phase

47

Superheated steam

—‘> Throttle

Hp-Turbine

'/

Astern- Lp-Turbine

Turbine \
\ 4

v

Figure 4.2 Steam Expansion or Power Generation Phase

Steam Condensation

After expansion, the third phase of the steam cycle is steam condensation which takes place
in the main condenser (Figure 4.3). The condenser is a heat-exchanger made up of tubes
that carry cold sea water. When steam passes over these tubes it loses latent heat to cold
water. After sufficient energy is removed from the steam, it changes phase and turns back
into water, called condensate. The condensate is pumped into the deaerating feed tank

before it is re-used in the boiler.

Feed

Feed, the last phase of the steam cycle, begins at the deaerating feed tank. The deaerating
feed tank is a storage tank for feed water. A feed pump pumps the feed water from this tank
to the boiler. Enroute to the boiler, the feed water is preheated in an economizer to salvage
the remaining thermal energy from flue gases leaving the boiler. Preheating of feed water
also improves the thermal efficiency of the boiler. Figure 4.4 shows the configuration of

components in the feed phase of the steam cycle.

Several of the components in the steam cycle of a power plant are control devices. The
control settings of these devices can be adjusted to safely meet the varying demand for
power. Often the operating conditions of these devices are altered by automated control
systems. The boiler control system is the most important among all control systems in a
marine power plant. The boiler control system of most modern Navy vessels is
sophisticated and needs minimum human intervention. Some components of the

automatic boiler control system (ABC) are described next.

Automatic Boiler Control System

Navy vessels typically have the following three ABC systems: automatic combustion
control (ACC), feed water control (FWC), and makeup and excess feed control systems.
These control systems perform the functions of measuring, comparing, computing and
correcting. In each control system, a state value of interest is measured first. Then, the
measured value is compared to a desired value. Next, if there is deviation between the
measured and the desired value of the state, a new operating condition is computed.
Finally, if necessary, the operating conditions are corrected or reset to reduce the observed

deviation in the state value.

Steam Expansion

Saltwater
Condenser l
* Scoop <— Scoop |« Sea
Hotwell § Valve p
[]
: v
g Se
Discharge > Main a
Condensate Valve Circulato ¢ Strainer
Pump
Cpd-Valve Glamisteam
Condensat:eI Gland-Exhaust First-Stage
Condenser ——P™ Heater
Deaerating
Atmospheric Feed
Drain-Tank Tank

Feed

Figure 4.3 Steam Condensation Phase

Steam Condensation

Deaerating
Feed
Tank

Feed-Pump P I;{::‘lu\';’aa:::

Economizer

v

Steam Generation

Figure 4.4 Feed Phase

Automatic Combustion Control System

The function of the automatic combustion control system is to maintain the boiler drum
pressure at a constant value during steady and changing load conditions. The ACC system
accomplishes this task by

(1) constantly measuring the steam drum pressure and combustion air flow;

(2) comparing the steam drum pressure to the specified designed value;

(3) computing the amount of change, if any, in the furnace combustion; and

(4) correcting furnace combustion as needed.

When the steam demand on the boiler is increased, the steam drum pressure decreases
because the rate of steam withdrawal from the drum becomes greater than the rate of steam
production in the boiler. This pressure drop is sensed by the ACC system and an increase
in furnace combustion is computed to meet the increase in the demand for steam.
Computing the increase in furnace combustion involves computing the increase in the
supply of combustion air and a proportionate increase in the supply of fuel oil to assure
complete combustion. The ACC system controls the combustion air flow by regulating the
supply of steam to the forced draft fan turbine and controls the fuel oil flow by positioning
the main fuel oil control valve. Air flow measurement provides the ACC system with the

feedback necessary to perform this function.

Feed Water Control System

The function of the feed water control system is to maintain a constant water level in the
steam drum. The FWC system automatically does this by
(1) measuring the steam drum water level and the feed water flow rate to the boiler;
(2) comparing the measured water level in the drum to a designed value;
(3) computing the required change, if any, to the rate of feed water flow; and

(4) correcting the feed water flow rate as needed.

When the load is steady, the feed water flow rate into the boiler equals the rate of steam
consumption and the water level in the steam drum is normal. But, when the load changes,
so does the demand for steam. Any change in this demand is detected and the feed water
flow rate is adjusted to equal the steam flow rate out of the boiler. The actual control of feed
water flow is accomplished by adjusting the air-operated diaphragm of the feed water
regulator between the feed pump and the boiler.

52

Makeup and Excess Feed Control System

Operation of a steam-driven power plant often requires the addition or removal of water
from the steam cycle. The makeup and excess feed control system is responsible for doing

this and for maintaining a specified level of feed water in the deaerating feed tank.

Whenever the level in the deaerating feed tank deviates from the specified value, water is
either withdrawn from or added to the deaerating feed tank. In both cases the process is
facilitated by two standby tanks: the atmospheric drain tank and the distillate tank. When
the feed water level in the deaerating feed tank falls below normal, the makeup feed
regulator is adjusted by the control system to increase flow from the standby tanks.
Increased flow into the deaerating feed tank compensates for the loss in the feed water
level. Similarly, a deaerating dump regulator is activated by the control system to
withdraw excess feed water from the deaerating feed tank when the level in the tank rises

above the normal value.

In addition to the automatic boiler control system, a power plant has several other controls
which are not discussed here because they are not relevant to the scope of problems covered
by Turbinia. A brief description of the failures in the power plant and the nature of the

troubleshooting task are provided next.

Troubleshooting Task

Many failures in marine power plants, particularly those simulated by Turbinia, are not
catastrophic in nature. Most failures involve a single maifunctioning component
resulting in progressive deterioration of performance. However, if these failures are left
unattended for a long time, catastrophic situations may be created due to cascading of
failures. Thus, troubleshooting for a failure involves identifying a single
malfunctioning component, and invesiigations to identify the cause of the failure must

begin as soon as symptoms of abnormal behavior are noticed.

Since a single failure by itself is usually not catastrophic, the troubleshooting task of
identifying the failed component is not severely constrained by time. Although prompt
identification of failed component is cost effective, well defined procedures do not exist for

identifying faults quickly. Therefore, unlike catastrophic situations where operators are

53

taught to follow mandatory procedures, troubleshooting involves forming a set of several
concurrent hypotheses concerning failed components and repeatedly refining the
hypotheses based on the outcome of diagnostic tests. The refinement of hypotheses

continues until the suspicion set is reduced to a single component.

Diagnostic problem solving task in a dynamic domain is not easy due to three main
reasons. First, the effects of a failure, in the form of abnormal system states, propagate due
to system dynamics. Therefore, abnormal system states usually cannot be uniquely
associated with specific failures. Second, even when such a unique relationship can be
defined it can only be done for steady state values. However, the system seldom attains a
steady state. Third, even if the system attains a steady state it may take a long time to do so.
Troubleshooting, on the other hand, must begin immediately, or else it may have

catastrophic consequences.

The diagnostic problem solving task in a real system is further complicated by the
operator's inability to observe all abnormal system behaviors. This is due to the limited
number of available gauges. This limitation prevents the operator from accessing
pressures, temperatures, and flow measurements across every component. Thus, the
operator has to effectively utilize the available diagnostic information to identify the

malfunctioning component.

Training for the troubleshooting task in a marine power plant can be at several levels
depending upon the educational backgrounds and experience of the student operators. A
comprehensive computer-based instructional system that can provide training at all
levels, although ideal, is a "more long term"” goal. Instead, a more pragmatic approach is
to design a training program that can satisfy the diverse needs of a homogeneous

population with respect to their educational background and experience.

Turbinia-Vyasa, the instructional system developed as a part of this research effort has a
limited but pragmatic pedagogical goal. It aims at improving the troubleshooting skills of
marine engineers and naval personnel who learn to operate the power plant as a part of
their curriculum. A brief description of the knowledge, skills and experience of a typical

student who will be trained on Turbinia-Vyasa is provided next.

Student Operator

A novice operator in training, although unfamiliar with the faults in the power plant, has a
basic understanding of the theory of power generation. The student is usually also
familiar with the names and functions of the individual components but does not
completely understand the integration of the components into the system, their role in
achieving the higher level system goals, their interaction with other components and the
dynamics of the system. Very few students are knowledgeable about the detailed structural
layout of the power plant even though they may have a general idea about the locations of
individual components. Therefore, the students who will use Turbinia-Vyasa, in addition
to practical experience and exposure to failure situations, need to consolidate their

knowledge of the structure, function and behavior of the power plant and its components.

This concludes the description of the instructional system's domain. The next section
provides a description of Turbinia, the marine power plant simulator, used in the

instructional system.

Turbinia; The Simulator

Turbinia, the marine power plant simulator, was designed using qualitative
approximation to represent system dynamics. It can simulate a large number of failures
in a marine power plant and provides a good environment for teaching troubleshooting. It
is an enhanced version of QSTEAM (Govindaraj, 1987) and PEQUOD (Fath, 1987) that is
more robust, modular, and suitable for application in training programs. However, it
retains the basic notion of hierarchical representation of components used in the earlier

versions.

The qualitative approximation methodology is based on a hierarchical description of the
system. The primitives that form the basic units of the hierarchy are the simplest form of
components performing a single operation or a function, e.g., providing a path for some
fluid in the case of a conduit. In Turbinia, approximately 100 components have been
modeled to achieve fairly high degrees of structural and dynamic fidelity even though the
physical fidelity of the simulator is low.

In modeling the system hierarchy, the components in the power plant have been categorized
into two basic primitive types: simple and composite. The simple primitives have a single
fluid flowing in and out of them. The fluid may, however, exist in different phases within
the simple primitive and may flow to and from multiple components. The composite

primitives, on the other hand, have two fluids flowing through them.

Simple as well as composite primitives are further subdivided depending upon the function
they perform. In Turbinia, there are twelve simple primitives and one composite primitive.
The simple primitives are: capacitor, conduit, controller, convertor, gain, double-gain,
phase-changer, reactor, sink, source, source-sink, and transducer. The heat-exchanger is
the only composite primitive. All components in the simulated power plant are instances of
simple and composite primitives. A summary of system decomposition into simple and

composite primitives is shown in Figure 4.5.

The knowledge concerning the components of the power plant, represented in Turbinia, is
of two types. One is structural knowledge that includes information such as connections to
other components, gauges attached, and fluids flowing through the component. The other is
knowledge needed to compute the evolution of system states during simulation. This
knowledge consists of equations that approximate the functions of the primitive, including
parameter values necessary to maintain temporal fidelity of state evolution during
normal and failed states of the components. A complete description of the details of

implementation are provided later in a separate section.

Turbinia uses pressure, temperature and flow or level to describe the states of the simulated
marine power plant. Abnormal system states are described in terms of deviations of
pressure, temperature and flow or level from their nominal value. Therefore state value
corresponding to normal operation is zero in all cases. State values are computed from
functionally approximate system equations and are expressed in a qualitative manner.
There are five qualitative values used to describe the system states: low, slightly low,
normal, slightly high, and high.

Evolution of system states during simulation is performed in two steps. First, the states of
the individual components are updated, one at a time, using the approximate system
equations. The computation involves solving the equations for each component using
parameter values appropriate for the current status of the component. The current status of

the component can have four values: normal and unaffected, normal but indirectly

Marine Power Plant

Simple Primitives Composite Primitives
- Capacitor - Heat-exchanger
- Conduit
- Controller
- Convertor

- Double-gain

- Gain

- Phase-changer
- Reactor

- Sink

- Source

- Source-sink

- Transducer

Figure 4.5 System Hierarchy

57

affected, normal but directly affected, and abnormal or failed. While all components that
have abnormal state values across them are considered affected, only those that experience
the effects of failure due to interaction with the failed component are said to be directly
affected. Others that experience the effects of failure due to propagation are considered
indirectly affected.

For normal and unaffected components as well as normal but indirectly affected
components the computed states are zero (normal) till the input states of the component
become abnormal (i.e., non-zero). When the input states become abnormal, the parameter

values determine the effect of failure that gets propagated across the component.

For normal but directly affected components as well as the failed component, the parameter
values determine the extent of deviation from the normal. While the parameter values for
the failed component are used to compute the deviation from the normal from the very
beginning of the simulation, the parameter values for normal but directly affected
components are used after some pre-determined time interval to maintain temporal

fidelity of state evolution.

After computing the states of the individual components, including the failed component,
the next step in state evolution involves propagating the updated states to successor
components. Propagation involves transmitting the output states of all components to input
states of the successor components. The simulation proceeds by repeating the cycle of
alternately updating and propagating the system states. For the purpose of maintaining the
temporal fidelity of state evolution, the time interval between cycles is adjusted for

individual faults.

In addition to the primitives discussed, the simulator has knowledge of the gauges in the
system. There are three types of gauges: pressure, temperature and flow or level. The flow
and the level gauges are identical except that the level gauges are mounted on tanks and
flow gauges appear between components. Wherever available, these gauges display the
qualitative values of system state. These values are updated whenever the states of the

component adjacent to the gauge on either side is updated.

Finally, the simulator also has knowledge of the graphical representations of components,
gauges and icons used by its interactive user interface. This knowledge includes

responses to user actions at the interface.

This completes a description of the simulator Turbinia. Further impleinentation details of
the simulator and its user interface are provided later. The next section describes the

computer-based tutor Vyasa.

Vyasa: The Computer-Based Tutor

Vyasa is a computer-based intelligent tutor that trains operators to troubleshoot the marine

power plant simulated by Turbinia. Vyasa operates in two modes: passive and active.

In the rassive mode the student is solely responsible for initiating the communications.
When the passive tutor is invoked, the simulation is temporarily brought to a halt and the

student can access various segments of knowledge in the expert module.

In the ¢ ctive mode, the tutor takes the initiative to provide instructions when it evaluates a
possik.e misconception based on the student's actions. The instructions may be provided by
the aci ve tutor with or without intervention. The capabilities of active tutor include all the

capabi;ities of the passive tutor as well.

This s ction describes the knowledge organization in Vyasa. Complete details of the
implemrentation and a description of the student’s interaction with Vyasa are provided

later »» a separate section,

Vyasa 1'ses the framework for knowledge organization proposed in the preceding chapter.

Knowl. dge in the tutor is comprised of:

(1) system knowledge,

(2) failure knowledge,

(3) knowledge of student actions,

(4) knowledge to update the student model,

(5) knowledge to evaluate misconceptions, and

(6) instructional knowledge.

The expert module of Vyasa contains the system and failure knowledge. The rest of the
knowledge is contained in the instructional module of Vyasa. A complete discussion of

Vyasa's knowledge appears next.

System Knowledge

System knowledge in Vyasa is comprised of fluid paths, functional subsystems, and
schematics (Figure 4.6). Each fluid path is made up of components sharing a common
fluid in the power plant. Each subsystem is a collection of components responsible for an
important system function. Each schematic is a pictorial representation of a section of the
power plant. These three constituents of system knowledge are interrelated. For instance,
a fluid path may appear in multiple subsystems and schematics. Similarly, a subsystem
may contain several fluids and may span over multiple schematics. Also, a single
schematic may contain several fluid paths and subsystems. Each constituent of system

knowledge is now described in further detail.

Fluid paths

Representation of a power plant as a collection of fluids is done by decomposition of the
system into thirteen fluid paths. They are: combustion air, fuel oil, flue gas, feed water,
superheated steam, desuperheated steam. stcam, main condenser hot fluid, condensate,
main condenser cold fluid, saltwater, control air, and lube oil. Among these thirteen paths,
six represent different segments of a single continuous closed loop water path. Water that
flows through this closed loop is called feed water prior to entering the boiler, steam at the
boiler exit, superheated steam past the superheater, desuperheated steam at the
desuperheater exit, main condenser hot fluid in paths leading to the condenser and

condensate in the paths feeding to the deaerating feed tank.

The fluid path knowledge in Vyasa includes information such as the name of the fluid, and
the name of the subsystems and schematics in which the fluid is found. Also included is a

list of connectors and components in each schematic that contains the fluid.

Schematics Structural knowledge
System Functional * .

Knowledge subsystems Components € Functional knowledge
Fluid paths Behavioral knowledge

Figure 4.6 System Knowledge Decomposition

Functional subsystems

Functional decomposition of the power plant is done via nine subsystems. They are:
combustion, steam generation, auxiliary steam use, power generation, steam

condensation, feed water preheating, lubrication, control air, and saltwater service.

Steam generation, power generation, steam condensation and feed water preheating
subsystems are responsible for the four major functions performed in the power plant

during the four phases of the steam cycle described earlier.

The combustion subsystem is responsible for burning the fuel-air mixture to release
thermal energy for heating water in the boiler. The auxiliary steam use subsystem is
responsible for operating the auxiliary units of the power plant. This subsystem uses low
pressure desuperheated steam to run auxiliary equipment such as the feed water pump, fuel
pump, saltwater service pump and the forced draft fan. It also uses the desuperheated steam
to preheat the fuel oil and the feed water and to prevent leakage of air into and out of the
turbine casings. The interaction between all these subsystems to produce power is

summarized in Figure 4.7.

The remaining subsystems perform other functions necessary for the safe operation of the
power plant. The control air subsystem is responsible for distributing control air to many
valves and regulators operated by control air. The lubrication subsystem lubricates

moving parts and removes the heat produced by friction. The saltwater service subsystem

distributes the cold sea water to remove heat from units dissipating heat.

The subsystem level knowledge represented in Vyasa consists of the name of the
subsystem, its primary function, the names of fluids present in the subsystem and the
names of the schematics in which the whole or part of the subsystem can be viewed. In
addition, a list of connectors and components that constitute the subsystem along each fluid

path in each of the relevant schematic is also included.

Combustion Steam Generation| Power Generation
Subsystem > Subsystem Subsystem

A

Auxiliary Steam Use
Subsystem

v

Feedwater Preheating Steam Condensation
Subsystem — Subsystem

Figure 4.7 Interacting Subsystems of Marine Power Plant

Schematics

In Vyasa, the structural view of the power plant is provided by seven schematics: boiler,
steam, feed water, fuel oil, control air, saltwater, and lube oil. Each schematic contains

one or more subsystems and fluid paths.

The boiler, steam, feed water, and fuel oil schematics contair the main subsystems
responsible for the production of power (shown in Figure 4.7) and all the six segments of the
closed loop water path. A complete description of the interactive schematic interface is

provided later in this chapter.

The schematic knowledge represented in Vyasa includes information such as the names of
the components, subsystems and fluid paths, list of icons displayed, list of graphical objects
that represent the components and connectors, and a list of gauges. In addition, the
schematic knowledge of Vyasa includes information about regions of the schematic that
are sensitive to mouse clicks, records of regions picked by the user, and instructions for

highlighting or lowlighting the picked region.

Components

System knowledge at the component level concerns a component's structure, function and
behavior. In Vyasa, the structural, functional and behavioral knowledge of components is
organized at the level of detail necessary for the troubleshooting task. A component's
structural knowledge refers to its input and output connections to other components, fluids
carried by it, gauges attached to it and its association with a functional subsystem and
schematic. The functional knowledge is a description of the purpose of the component in the
system and its contribution to the higher level system function. The component’s
behavioral knowledge describes the manner in which the system state values are affected

by the presence of the component in both the normal and failed states.

In addition, the system knowledge at the component level includes the modes in which the
component can fail, the parameters that are used to compute the component's behavior in
the failed state, and the component's link to the graphical object that represents it on the

schematic interface.

Failure Knowledge

The failure knowledge in Vyasa is organized in terms of modes of failure and specific
failures. Specific failures are faults simulated by Turbinia. Knowledge of failure modes
helps the tutor to teach the student about typical abnormal behaviors associated with each
mode. Knowledge of specific instances of failure helps the tutor in evaluating student's

actions. Both components of failure knowledge are described below.

Modes of Failure

Vyasa has knowledge of four most common modes of failure for components of Turbinia:
(a) blocked-shut, (b) stuck-open, (¢) leak-in, and (d) leak-out. Knowledge of each mode of
failure includes the typical system behavior associated with it, possible reasons for
deviations from expected abnormal behavior, and names of components in the system that

are known to fail in that mode.

Knowledge of blocked-shut mode of failure, for instance, includes the upstream and
downstream abnormal system behaviors expected in liquid and gas paths, the type of
component that can curtail the propagation of abnormal behavior, and the names of the
component in the power plant that are commonly known to fail in the blocked-shut mode. A
summary of typical system behavior and the conditions that curtail the propagation of

abnormal behavior for each of the four modes is shown in Table 4.1.

Specific Failures

Knowledge of specific failures includes initial symptoms, cause and mode of failure. In
addition, the subsystems, fluid paths, schematics, components and gauges affected by each

failure are included in the tutor's knowledge of specific failures.

Vyasa also has access to "pre-defined” explanations of cause-effect associations that
describe the propagation of abnormal gauge readings under each failure condition. These
explanations, along with diagnostic tests that serve as evidence for or against the specific

failures, form an essential part of the tutor's failure knowledge.

Table 4.1 Typical Abnormal System Behavior

Failure Fluid State Abnormal Behavior Propagation Limited By
Mnde Upstream Downstream | Upstream Downstream
.. . Infinite Infinite
Liquid| Level High Low Sink Source
Blocked-Shut
. Safety Infinite
Gas | Pressure High Low Valve Source
Liquid| Level Low High Irslgllll;ct: Infs'linnilt;e
Stuck-Open
Gas | Pressure Low High Iggg:ctz \SIZ{"(:EY
Liquid| Level High High Ié‘ii‘;‘te I“gg:ie
Leak-In
. . Safety Safety
Gas | Pressure High High Valve Valve
Liquid] Level Low Low
Leak-Out Infinite Source
Gas | Pressure Low Low
66

Knowledge of Student Actions

A computer-based tutor must have some means of evaluating the purpose of student’s
actions. This capability enhances the tutor's ability to infer misconceptions. Vyasa infers
student’s misconceptions based on student's actions using its knowledge of the valid forms

of interactions at the student-tutor interface.

A student interacts with Turbinia-Vyasa in three modes: troubleshooting mode, tutor dialog
mode, and diagnose mode. In the troubleshooting mode the student interacts with the
simulator only. In the tutor dialog mode, the interaction is with Vyasa. In the diagnose

mode, the student attempts to identify the failed component.

In all the three modes of interaction, Vyasa recognizes nine types of valid actions: call-for-
schematic-action, investigative-action, informative-action, diagnose-request-action,
diagnostic-action, help-request-action, resume-request-action, tutor-dialog-action and
modal-dialog-action. A call-for-schematic-action is performed to call a new schematic or
switch between schematics. An investigative-action is performed to view the gauges
altacned o a component. An informative-action usually follows the investigative-action
and is takeu to display the gauge readings. A diagnose-request-action is taken to switch to
the diagnostic mode. The diagnostic-action is the action of identifving the failed
component. The help-request-action and the resume-request-action switch the student to the
tutor dialog and the troubleshooting modes respectively. Tutor-dialog-actions are all
actions taken in the tutor dialog mode. Finally, modal-dialog-actions terminate

interactions with dialogs.

Vyasa keeps a record of all recognized actions in a student model. This record is updated

and used to determine student's misconceptions after every action.

Knowledge to Update the Student Model

The student model in Vyasa is a dynamic data structure that maintains a record of actions
taken by the student. Each student action, if recognized as one of the nine types of valid
actions, is time stamped and information relevant to the action is stored. I~ this manner,
the student model keeps account of the schematics viewed, the order in which they were
viewed, the sequence of subsystems and fluid paths explored, the components investigated,

the gauges probed and their gauge readings at the time of the investigation.

67

After each student action, the subsystem and the fluid path most suspected by the student is
determined. A count is kept of the number of investigations made in each subsystem and
fluid path. The subsystem and the fluid path with the maximum number of investigative-
actions are also the most suspected if at least one of the last three investigations have
occured in that subsystem or fluid path. Otherwise, the most suspected subsystem or the
most suspected fluid path is the one investigated last. Thus, after every action, the
information concerning the most suspect subsystem and the most suspect fluid path in the

student model is revised.

In addition to recording the actions, the student model maintains a list of the student's past
and current hypotheses concerning the failure. This information is a list of components
with their respective modes of failure, which, in the opinion of the student, explains the
observed abnormal system behavior. This information on student's failure hypotheses is

directly elicited from the student when Vyasa functions in the active mode.

Knowledge to Evaluate Misconceptions

The knowledge to evaluate misconceptions gives Vyasa the ability to deliver
individualized instructions. This knowledge has a rule-based structure. These rules are

used to identify three types of misconceptions based on observed student actions.

The first misconception concerns deficiency in student's knowledge of system structure.
Vyasa identifies this structural misconception when the student investigates components
in a schematic unaffected by the current failure. Knowledge of schematics affected by each
failure, needed to evaluate the structural misconception, is obtained from the tutor's

knowledge of the failures.

The second misconception concerns deficiency in student's knowledge of system
functions. Vyasa identifies this functional misconception when the most suspected
subsystem or fluid path inferred from the student's action is unrelated to the failure being
investigated. Knowledge of subsystems and fluid-paths related to each failure, needed to
evaluate the functional misconception, is obtained from the tutor's knowledge of the

failures.

The third misconception concerns deficiency in student's knowledge of fault related
system behavior. Vyasa identifies this behavioral misconception when a student continues
to pursue a failure hypothesis that should have been rejected based on the diagnostic
evidence available. As in the identification of the first two types of misconceptions, the
additional information required to evaluate behavioral misconception is available to the
tutor. For example, probable evidence against each failure in terms of diagnostic test
results is stored within the tutor's knowledge of failures and actual tests conducted by the
student are stored in the student model. Thus, by comparison, the tutor can determine if a

diagnostic test that suggests the elimination of a hypothesis has been conducted.

After Vyasa has evaluated a student's misconceptions, it uses its knowledge to deliver
instructions to rectify the misconceptions. Knowledge concerning delivery of instructions

is described under instructional knowledge.

Instructional Knowledge

Instructional knowledge concerns instructional content, its form and time of
presentation. The instructional content is either extracted verbatim from the tutor's
knowledge base or is generated using a template. The form of instructional presentation is
either textual or graphical. The time of presentation of instructional material is always
issue-based which encourages intervention at particular occasions. Knowledge related to

content, form and time of instructional presentation is discussed in further detail below.

Content

inform...ion provided to the students by the tutor comes from units of instructional sets
prepared in advance. However, the details to be inserted in the instructional sets is often
context-driven. For example, when a student inquires about the behavior of a component,
the information is always presented in the same format on a dialog box. It consists of
relationships between input and output states of the component. Details of the input-output
relationships depend upon the functional primitive that represents the component. Thus,
although the details of the information presented are context-specific, they are extracted

verbatim from the tutor's knowledge base.

There are instances when the instructions are not extracted verbatim from the tutor's

knowledge base. Instead, context-specific information relevant to the actions of the student

2]

L

is generated to fill an appropriate instructional template. Such an instruction generation
typically occurs when the student seeks advice concerning a failure hypothesis. For
example, when advice is sought about a hypothesis which should not be pursued based on
evidence gathered, the tutor generates instructions suggesting hypothesis refinement. The
tutor generates this advice using an instructional template shown in Figure 4.8a. The
instructional template sets the general tone of the advice but does not contain the evidence to
be cited for hypothesis revision. The evidence, which is a diagnostic test already conducted
by the student, is inserted in the instructional template during advice generation to provide

the context-specific meaning to the advice.

The instructional template used for advice generation is the same on all occasions for the
same type of advice. In all there are four such instructional templates used by the tutor (See
Figures 4.8a, b, ¢, and d). Each template is used for a different type of advice. One is used
for suggesting hypotheses revision, another to indicate lack of adequate evidence to pursue
a hypothesis, a third to suggest a diagnostic test to strengthen or weaken a hypothesis; and a

fourth to convey the tutor's inability to provide advice under existing conditions.

Form

Like content, the form of instructional presentation is also context-dependent. For
example, answers to queries related to subsystems and fluid paths that can be visualized on
the simulator interface are presented graphically. Therefore, when the student wants to
know the components that constitute a particular subsystem, showing these components by
highlighting them in schematics is preferred over listing the names of the components in a

dialog box.

Where graphics is unlikely to enhance the understanding of the instructions or where
graphical aid is computationally expensive the instructions are presented in the form of
text. For example, the function of components can be eloquently and adequately described
in text. Using graphics or supplementing text with graphics to describe component
functions is tedious, computationally expensive and unlikely to provide additional

information.

70

(Suspected Failure Mode) (Suspected Component)

(Suspected Component) has probably not failed in a (Suspected
Failure Mode) mode because the (Gauge) on (Component) shows
a (Qualitative State Value) reading.

Figure 4.8a Instructional Template to Suggest Hypothesis Revision

(Suspected Failure Mode) (Suspected Component)

You probably have a good reason to suspect a (Suspected Failure
Mode) (Suspected Component), but at this point you do not have
adequate evidence

Figure 4.8b Instructional Template to Indicate Lack of Evidence

(Suspected Failure Mode) (Suspected Component)

Checking (Gauge) on (Component) can help strengthen/weaken
your hypothesis concerning (Suspected Failure Mode)
(Suspected Component).

Figure 4.8c Instructional Template to Suggest a Diagnostic Test to
Strengthen or Weaken a Hypothesis

(Suspected Failure Mode) (Suspected Component)

At this moment no help can be provided concerning (Suspected
Failure Mode) (Suspected Component).

Figure 4.8d Instructional Template to Express Inability to Provide Help

However, where graphics supplemented with text may help students retain vital
information or reduce errors, a dual mode of presentation is adopted. For example, there
are four icons that are commonly used to represent the four modes of failure. These icons
indicate the structural changes in the failed component associated with the mode of failure
they represent. Although clearly distinguishable, these icons are accompanied by text in
dialog boxes used by the students to indicate the suspected mode of failure. Thus, an icon
representing a blocked-shut mode of failure also has "blocked-shut” written under it. This
dual mode of presenting information reduces the inadvertent error of incorrect selection of

a failure mode while indicating the suspected mode of failure.

Form of presentation include more than just the graphics and/or text. There are certain
instructions that convey an error message or require immediate attention. When these
instructions are displayed, they are accompanied by a beep. Instructions of this type must
be acknowledged before the student is permitted to proceed further. Such instructions

disable the mouse, until the student performs a specified action.

Time and Duration

Apart from instructional content and its form of presentation, Vyasa has knowledge about
time and duration of instructional presentation. Instructions that are given on request
from the student are provided immediately in a dialog box or in the special tutor
communication window. These instructions are displayed for an unspecified duration of
time until the student makes a new request. In some cases, however, the student is required

to acknowledge the receipt of instructions before making a new request.

In addition to the instructions presented on request, Vyasa delivers instructions on its own.

Vyasa delivers these instructions with and without intervention depending on the context.

Instructions with Intervention

When the tutor identifies a misconception, instructions to rectify the misconceptions are
presented immediately with a beep. The tutor has different sets of instructions for each of
the three types of misconception it identifies. The instructional sets for structural and
functional misconceptions inform the student that a region unaffected by the current
failure is being investigated unnecessarily. The idea is to suggest that the student only

investigate portions of the system relevant to the failure. Similarly, when behavioral

73

misconceptions are identified, the student is instructed to refine the failure hypotheses

based on the evidence available.

Since the instructions to rectify misconceptions are highly context-sensitive and may
change with every new action taken by the student, they need to be presented only as long as
they retain their context-sensitivity. For example, when the student investigates an
unaffected schematic the tutor informs the student that the schematic being investigated is
unaffected by the failure. However, it makes sense for the tutor to display such an
instruction only while the unaffected schematic is being viewed. But, if the student quickly
switches to an affected schematic while the instructions have not been displayed long
enough for the student to read them, the instructions are not erased from the tutor window.
Instead, they continue to be displayed for a specified minimum duration of time necessary
to read them.

Sometimes the student ignores the instructions given by the tutor. Whenever it is obvious

from new actions that the student has ignored the instructions, the same instructions must
be presented again. In such cases, Vyasa delivers the same instructions again with a beep
instead of extending the duration of display of the previous instruction. This increases the

likelihood of drawing the attention of the student to the instructions.

Instructions without Intervention

Instructions are also provided without intervention at the end of the training session.
These instructions include explanations of abnormal gauge readings for the failure
investigated during the session. These are causal explanations that animate the effects of
fault propagation and are presented in a chronological order. For each failure, these

explanations are stored as a pre-defined set in the failure knowledge of Vyasa.
This completes the description of the components of knowledge in Vyasa. The

implementation details such as the method of knowledge representation and controls in

Turbinia-Vyasa are discussed next.

74

Knowledge Representation and Control Structure

Knowledge Representation

Vyasa uses objects to encapsulate the components of knowledge described above. Most of the
knowledge is represented in a declarative form and is amenable to changes. Most of the
procedures that manipulate data are not stored separately but are also encapsulated within
the objects. Object-oriented programming features such as inheritance and polymorphism
have also been effectively employed. Objects that are instances of the same class have
similar representations and share methods that create and manipulate data. A detailed
description of the abstract data types used for representing knowledge is provided below.

Throughout this section, the object classes are shown in a sans serif (Helvetica) font.

Fluid paths

Knowledge concerning the thirteen fluid paths is represented in instances of an object
class called FluidPath (Table 4.2). FluidPath has six variables: fluid-path-name, in-
schematic, in-subsystem, components, connectors, and fluid-path-schematic-association.
Fluid-path-name stores the name of the fluid path. Variables in-schematic and in-
subsystem store the names of the schematic and subsystems in which the fluid path is
found. A list of component names that lie along the fluid path is stored in the variable
components and a list of instances of the type connector that represent connections between

these components is stored in the variable connectors.

Fluid-path-schematic-association contains information that separates the components and
connectors in the fluid path by schematic. This information is organized in a list of paired
associations. Each paired association consists of a schematic name and an instance of
FluidPathStructureWithinSchematic (Table 4.3) which stores structural information for the
segment of the fluid path that lies within the paired schematic. This structural information
consists of a list of component names and connector objects that lie in the fluid path within
the paired schematic. Since each paired association contains structural information for
the segment of the fluid path in one schematic, the total number of paired associations in the

whole list is the same as the number of schematics in which the fluid path is found.

Table 4.2 Description of Object Class FluidPath

Class: FluidPath
Class Variables Description
fluid-path-name name of the fluid path
in-schematic schematics in which the fluid path is found
in-subsystem subsystems in which the fluid path is found
components component s that lie in the fluid path
connectors Connector objects that lie in the fluid path
fluid-path-schematic-association | list of paired associations. Each pair stores a name
of schematic and an instance of
FluidPathStructureWithinSchematic

Table 4.3 Description of Object Class FluidPathStructureWithinSchematic

Class: FluidPathStructureWithinSchematic

Class Variables Description

components component s that lie in the fluid path within a
single schematic

connectors Connector objects that lie in the fluid path within a
single schematic

76

An example of a fluid path in the simulated marine power plant is the fuel oil path. The fuel
oil path is found in fuel oil and boiler schematics. Components that lie along the fuel oil
path are fuel oil settling tank, fuel oil service pump, fuel oil hp regulator, fuel oil heater,
fuel oil discharge strainer, fuel oil control valve, master fuel oil valve and the burner. All
except the burner in the fuel oil path are displayed on the fuel oil schematic. The object
FuelQilPath is shown in Table 4.4. Instances of all the thirteen fluid paths are created

prior to run time and are initialized from data in input files.

Table 4.4 Description of *FuelQilPath*

Object: *FuelOilPath*
Instance of: FluidPath

Instance Variables

Value

fluid-path-name

fuel-oil-path

in-schematic

(fuel-oil-schematic boiler-schematic)

in-subsystem

(combustion-subsystem)

components (fuel-oil-settling-tank fuel-oil-service-pump
fuel-oil-hp-regulator fuel-oil-heater
fuel-oil-discharge-strainer fuel-oil-control-valve
master-fuel-oil-valve burner)

connectors ((#<connector 4003344> #<connector 4003276>

#<connector 4003208> --------------)

fluid-path-schematic-association

((fuel-oil-schematic
#<FluidPathStructureWithinSchematic 4043316>)
(boiler-schematic
#<FluidPathStructureWithinSchematic 4043116>)
)

Object: #< 4043116>
Instance of: FluidPathStructureWithinSchematic
Instance Variables Value
components (burner)
connectors (#<connector 4020708>)

Functional subsystems

Knowledge concerning the nine subsystems is represented in instances of an object class
called FunctionalSubsystem (Table 4.5). FunctionalSubsystemn has seven variables:
subsystem-name, in-schematic, fluid-paths, components, connectors, function and

subsystem-schematic-association.

Subsystem-name stores the name of the subsystem. Variables in-schematic and fluid-
paths store the names of the schematics in which the subsystem is visible and the names of
the fluid paths that pass through the subsystem. A list of component names that constitute
the subsystem is stored in the variable components and a list of instances of the type
connector that represent connections between these components is stored in the variable

connectors. Function stores the description of the function performed by the subsystem.

Subsystem-schematic-association contains a list of paired associations. Each paired
association consists of a schematic name and an instance of
SubsystemStructureWithinSchematic (Table 4.6). As in the case of fluid paths, these pairs
separate the components and connectors in the subsystem by schematic. Each instance of
SubsystemStructureWithinSchematic stores structural information concerning the portion of
the subsystem that lies within a single schematic. Since each paired association contains
subsystem structural information for a single schematic, the total number of such paired
associations in the whole list is equal to the number of schematics in which the subsystem

is found.

Each instance of SubsystemStructureWithinSchematic has four variables. One contains a
list of component names, the second a list of connector objects, and the third a list of fluid
path names. These components, connectors and fluid paths are those that are found in the
portion of the subsystem within a single schematic. The fourth variable, subsystem-fluid-
path-association, contains paired associations of the fluid path names and instances of
SubsystemStructureWithinFluidPath (Table 4.7) to further separate the suhsystem's

components and the connectors by fluid path in each schematic.

Table 4.5 Description of Object Class FunctionalSubsystem

Class: FuntionalSubsystem

Class Variables

Description

subsystem-name

name of the subsystem

in-schematic

schematics in which the subsystem is visible

fluid-paths fluid paths that pass through the subsystem

components components that constitute the subsystem

connectors Connector objects that connect the components in
the subsystem

function function performed by the subsystem

subsystem-schematic-association

list of paired associations. Each pair contains a
name of schematic and an instance of
SubsystemStructureWithinSchematic

Table 4.6 Description of Object Class SubsystemStructureWithinSchematic

Class: SubsystemStructureWithinSchematic

Class Variables Description
fluid-paths fluid paths in a single schematic that pass through

the subsystem

components components that constitute the portion of the
subsystem within a single schematic

connectors Connector objects that connect the components in
the portion of the subsystem within a single
schematic

subsystem-fluid-path-association | list of paired associations. Each pair has the name
of a fluid path that passes through the portion of the
subsystem within a single schematic and an
instance of SubsystemStructureWithinFluidPath

Table 4.7 Description of Object Class SubsystemStructureWithinFluidPath

Class: SubsystemStructureWithinFluidPath

Class Variables Description
components components that lie in a fluid path that passes
through the portion of the subsystem within a single
schematic
connectors Connector objects that lie in a fluid path that passes
through the portion of the subsystem within a single
schematic

An example of a functional subsystem in the simulated marine power plant is the
combustion subsystem. The combustion subsystem spans over the fuel oil and boiler
schematics. In the fuel oil schematic, the combustion subsystem has only fuel oil flowing
through it. In the boiler schematic, the combustion subsystem has fuel oil as well as
combustion air fluid paths in it. The combustion subsystem is comprised of fuel oil settling
tank, fuel oil service pump, fuel oil hp regulator, fuel oil heater, fuel oil discharge strainer,
fuel oil control valve, and the master fuel oil valve in the fuel oil schematic; and forced
draft fan, air heater, windbox, air register and the burner in the boiler schematic. Of the
components in boiler schematic, the burner is located in the fuel oil path and the rest lie
along the combustion air path. The *CombustionSubsystem®* object is shown in Table 4.8.
Instances of all the nine functional subsystems are created prior to run time and are

initialized from data in input files.

Table 4.8 Description of *CombustionSubsystem*

Object: *CombustionSubsystem*
Instance of: FuntionalSubsystem
Instance Variables Value
subsystem-name combustion-subsystem
in-schematic (boiler-schematic fuel-oil-schematic)
fluid-paths (fuel-oil-path combustion-air-path)
components (fuel-oil-settling-tank fuel-oil-service-pump

fuel-oil-hp-regulator fuel-oil-heater
fuel-oil-discharge-strainer fuel-oil-control-valve
master-fuel-oil-valve forced-draft-fan air-heater
windbox air-register burner)

connectors (#<connector 4020096> #<connector 4020028> ----)

function "To mix the combustion-air with fuel and ignite it
in the burner to release thermal energy”

subsystem-schematic-association | ((fuel-oil-schematic
#<SubsystemStructureWithinSchematic 4042304>)
(boiler-schematic
#<SubsystemStructureWithinSchematic 4042504>)

)
Object: #<4042504>
Instance of: SubsystemStructureWithinSchematic
Instance Variables Value

fluid-paths (fuel-oil-path combustion-air-path)

components (forced-draft-fan air-heater windbox air-register
burner)

connectors (#<connector 4020028> #<connector 4020640> ----)

subsystem-fluid-path-association | ((combustion-air-path
#<SubsystemStructureWithinFluidPath 3773792>)
(fuel-oil-path
#<SubsystemStructureWithinFluidPath 3773992>)

)
Object: #<3773992>
Instance of: SubsystemStructureWithinFluidPath
Instance Variables Value
components (burner)
connectors (#<connector 4020708>)

Schematics

Knowledge concerning the seven schematics is represented in instances of an object class
called Schematic (Table 4.9). Table 4.10 shows *BoilerSchematic®, an instance of
Schematic with most of its instance variables initialized from an input data file. Schematic

has seventeen class variables which are described below.

The variable ccl-window contains an instance of color-window, a system-defined subclass
of Macintosh windows. Color windows are used by the system to display information on the
screen.Title stores the title of the schematic window. Schematic-name contains the name
of the schematic. Components-in-schematic, fluid-paths-in-schematic, and subsystems-
in-schematic store the names of the components, fluid paths and subsystems visible in the
schematic respectively. Picture-handle contains a handle to the Macintosh picture
resource that is displayed in the schematic. High-light-function and low-light-function
are variables that point to procedures that highlight or lowlight selected regions within the
schematic window. Button-event-function points to a default function for system response

when the mouse is clicked within the schematic window.

Five other Schematic class variables, list-of-graphic-components, list-of-graphic-
connectors, list-of-graphic-icons, list-of-visible-graphic-gauges and list-of-graphic-
gauge-readings store references to objects that represent components, connectors, icons,
gauges, and gauge readings in the schematic respectively. These objects are called

graphical objects.

Table 4.9 Description of Object Class Schematic

Class: Schematic

Class Variables Description
cel-window an instance of system-defined color-window

title

name printed on the title bar of schematic

schematic-name

name of the schematic

components-in-schematic

compon-<nts in the schematic

fluid-paths-in-schematic

fluid paths in the schematic

subsystems-in-schematic

subsystems in the schematic

list-of-graphic-components

graphical objects that represent components in the
schematic; list of GeneralGraphicObject objects

list-of-graphic-connectors

graphical objects that represent connectors in the
schematic; list of Connector objects

list-of-graphic-icons

graphical objects that contain schematic icons in the
schematic; list of SchematiclconGraphicObject objects

list-of-visible-graphic-gauges

graphical objects that contain gauge icons in the
schematic; list of GaugelconGraphicObject objects

list-of-graphic-gauge-readings

graphical objects that contain the icons represe..ting
the qualitative state values displayed by a gave in the
schematic; list of GeneralGraphicObject obioris

picture-handle

a handle to the picture displayed in th-. schematic

high-light-function

pointer to the function that can highlight a region in the
schematic

low-light-function

pointer to the function that can lowlight a region in the
schematic

button-event-function

pointer to the function that evaluates response to last
operator action

list-of-active-regions

ActiveRegion objects

pick-region

last ActiveRegion selected by the operator

Table 4.10 Description of *BoilerSchematic*

Object: *BoilerSchematic*
Instance of: Schematic
Instance Variables Value

ccl-window

#<Object #280, "boiler-schematic”, a *color-
window*>

title

"boiler-schematic”

schematic-name

boiler-schematic

components-in-schematic

(ac-valve windbox tubes super-steam superheater stack
feed-water-regulator furnace forced-draft-fan
economizer drum desuper-steam desuperheater
burner attemperator atmosphere air-register
air-heater ad-drive air-damper)

fluid-paths-in-schematic

(control-air steam desuperheated-steam superheated
steam flue-gas feed-water fuel-oil combustion-air)

subsystems-in-schematic

(control-air-subsystem steam-generation-subsystem
combustion-subsystem)

list-of-graphic-components

(#<GeneralGraphicObject4002864>
#<GeneralGraphicObject 4002656> ---------)

list-of-graphic-connectors

(#<connector 4005248> #<connector 4005180> -----)

list-of-graphic-icons

(#<SchematiclconGraphicObject 4006436>
#<SchematiclconGraphicObject 4006636>--------)

list-of-visible-graphic-gauges

(#<GaugelconGraphicObject 4005736>
#<Gau§elconGraphicObject 4005936> ----)

list-of-graphic-gauge-readings

(#<GeneralGraphicObject 4005316>
#<GeneralGraphicObject 4005516> -------)

picture-handle

#<Mac Handle, Unlocked, Size 2512 #x1DE5B8>

high-light-function

#<Compiled-function
active-regions/default-high-light-fn>

low-light-function

#<Compiled-Tunction
active-regions/default-]ow-light-fn>

button-event-function

#<Compiled-function
active-region s/button-event-fn>

list-of-active-regions

(#<ActiveRegion 4005392> #<ActiveRegion 4005532>

pick-region

(#<ActiveRegion 4000416>)

Graphical Objects

Graphical objects are of several types. They are used to represent components and
connectors in the schematic. Graphical objects are also used for icons in a schematic

including those that represent gauges and gauge readings.

Components

Graphical objects that represent components in a schematic are instances of
GeneralGraphicObject described in Table 4.11. Each instance of GeneralGraphicObject
contains information that includes the component it represents, the schematic which it
appears in, the connectors attached to it, and the text that is printed on it. The graphical
object's location on the schematic, and the dimensions necessary to define its shape are

also stored in its instance variables.

Connectors

Lines on the schematic that represent the physical connection between two components and
show the direction of fluid flow through them are also graphical objects. They are called
connectors. Connectors are made up of horizontal or vertical lines or a combination of
both. The direction of fluid flow along the connectors is represented by an arrow-head.
Lines with arrow-heads are called vectors. The ends of the lines that have the arrow-heads

are known as leading edges of the connectors.

Connectors in the schematic are represented by instances of Connector described in Table
4.12. Each instance of Connector stores its color, the name of the schematic it is in, the
ncmes of the components at its trailing and leading edges and their graphical
representations, and the name of the fluid flowing through it. The location, length and
orientation of vectors and lines that make up the connector are also stored in its instance

variables.

Table 4.11 Description of Object Class GeneralGraphicObject

Class Variables

Class: GeneralGraphicObject

Description

parent-window

name of the schematic that contains the graphical
object

parent-object

name of the object represented by the graphical
object

list-of-input-connectors

Connector objects on its input side

list-of-output-connectors

Connector objects on its output side

printed-name

name printed on the graphical object

shape shape of the graphical object
origin-x x-coordinate of the point of origin
origin-y y-coordinate of the point of origin
width width of the graphical object
height height of the graphical object

scale-value

a factor that can be used to enlarge or reduce the
graphical object

Table 4.12 Description of Object Class Connector

Class Variables

Class: Connector

Description

parent-window

schematic that contains the connector

connects-from

component at the trailing edge

connects-to

component at the leading edge

from-graphic-object

graphical object that represents the component at
the trailing edge; an instance of
GeneralGraphicObject

to-graphic-object

graphical object that represents the component at
the leading edge; an instance of

GeneralGraphicObject

fluid fluid flowing through the connector

lines list of length and location of lines that make up the
connector

vectors list of length location and orientation of lines that
make up the connector

color name of the default color for the connector

Icons

Icons in Turbinia-Vyasa are Macintosh resources. However, in a schematic they are
represented by graphical objects. These graphical objects are also instances of
GeneralGraphicObject. Graphical objects that represent schematic icons are instances of
SchematiclconGraphicObject (See Table 4.13) which is a subclass of GeneralGraphicObject.
Graphical objects that represent gauge icons are instances of another subclass of
GeneralGraphicObject called the GaugelconGraphicObject (See Table 4.14).

Instances of SchematiclconGraphicObject inherit all variables of GeneralGraphicObject but
have an additional variable of their own. This variable, inter-schematic-link, stores
information that establishes links between schematic icons in different schematics. Use of
these links between schematic icons in schematics is required to provide smooth transition
between schematics. Details of how the transition between schematics is accomplished is

provided in the section under student-tutor interaction.

Instances of GaugelconGraphicObject have two additional variables of their own. One
variable, associated-active-region, stores an instance of ActiveRegion that must be added to
or deleted from the list of active regions in a schematic whenever the gauge icon is
displayed or removed from the schematic. The second variable, associated-gauge-display-
region, stores the Region adjacent to the gauge icon that is used for displaying the gauge
reading. A region object contains information about the location and dimensions of a

rectangular region on a schematic.

Gauge readings are represented by five icons, one each for low, slightly low, normal,
slightly high and high values. Similar to other icons in the schematic these too are
represented by graphical objects. These graphical objects are instances of
GeneralGraphicObject.

While graphical objects give visual representations to components, gauges, and schematic
icons, they do not give users the capability to interact with these objects. Making these
graphical objects active involves linking them with active regions. Active regions are
instances of ActiveRegion that give the graphical objects the ability to respond to user

interaction. Each manipulable graphical object is linked to an active region.

Table 4.13 Description of Object Class SchematiclconGraphicObject

Class: SchematiclconGraphicObject
Subclass of: GeneralGraphicObject

Class Variables Description

inter-schematic-link contains an instance of SchematiclconGraphicObject
in another schematic that establishes the
connection between two schematics

Table 4.14 Description of Object Class GaugelconGraphicObject

Class: GaugelconGraphicObject

Subclass of: GeneralGraphicObject

Class Variables Description

associated-active-region stores an instance of ActiveRegion that must be
added or deleted from the schematic whenever the
gauge icon plotted in the graphical object is
displayed or removed from the schematic

associated-gauge-display-region | stores an instance of system defined Region where
the reading of the gauge plotted in the graphical
object is displayed

Active Regions

An instance of ActiveRegion has seven variables shown in Table 4.15. These variables
store information about an active region such as the schematic window in which it appears,
its dimensions on the screen, and a pointer to the graphical object linked to it. Procedures tu
execute when the mouse button is pressed or released with cursor inside it are also

encapsulated within the object.

In an instance of Schematic (Table 4.9), active regions defined for the schematic are stored
in the variable list-of-active-regioas. This information is used by the schematic's button-
event-function procedure to determine if a mouse click has occured in an active region
defined for the schematic. In addition, an instance of Schematic also keeps a record cf the
last active region selected by the user. This information is retained in the variable pick-

region and is updated every time a new active region is selected.

Responses to user interaction for active graphical objects in a schematic are derived from
the propert. s of the object they represent. Components, gauges and icons are the three main
types of objects represented by active graphical objects in a schematic. These objects are

discussed next.

Table 4.15 Description of Object Class ActiveRegion

Class: ActiveRegion
Class Variables Description
parent-window name of the schematic that contains the active
region
region an instance of Region that specifies the location of

active region

button-down-function pointer to a function that executes the response to
mouse button down activity

button-up-function pointer to a function that executes the response to
mouse button up activity

high-light-function pointer to a function that highlights the active
region

low-light-function pointer to a function that lowlights the active region

data stores any context-specific information needed to

execute the button-up and button-down functions

Components

All components are instances of classes of objects defined by the primitive class hierarchy
(Figure 4.9). These components are instantiated prior to run time using a data file that
contains structural, functional, behavioral information about components along with

knowledge of failures in the component.

At the top of the primitive class Lierarchy is an object class called Primitive. The nine class
variables of Primitive are shown in Table 4.16. Values attached to these variables define the
structure, function and behavior of the instantiated object. Each variable of Primitive is
described in detail below.

Linked-graphic-objects

Linked-graphic-objects stores a list of paired associations. Each paired association
consists of a schematic name and an instance of a graphical object that represents the
primitive in that schematic. Thus, the number of paired associations in the list is the same

as the number of representations of the primitive in various schematics.

General-structure

General-structure stores an instance of PrimitiveGeneralStructure (Table 4.17). The class
variables of PrimitiveGeneralStructure store structural information that is relevant to all
primitives. It stores the names of the subsystems, fluid path and schematics that contain the

primitive, and the gauges attached to it on the input and output sides.

Specific-structure

Specific-structure stores an instance of PrimitiveSpecificStructure. The class
PrimitiveSpecificStructure has two subclasses. Instances of primitives store one of the two
subclasses of PrimitiveSpecificStructure in their specific-structure instance variable.
Depending upon the subclass, the primitives are categorized as simple or composite

primitives. Thus, SimplePrimitive and CompositePrimitive are subclasses of Primitive which

Simpie Primitives
- Capacitor
- Conduit
- Controller
- Convertor
- Double-gain
- Gain
- Phase-changer
- Reactor
- Sink
- Source
- Source-sink
- Transducer

Primitive

Composite Primitives

- Heat-exchanger

All components are instances of Primitive or its subclasses

Figure 4.9 Primitive Class Hierarchy

Table 4.16 Description of Object Class Primitive

Class: Primitive

All components are instances of Primitive or its subclasses

Class Variables

Description

linked-graphic-objects

list of paired associations. Each pair cci.itains the
name of a schematic and an instance of
GeneralGraphicObject that represents the primitive
in the schematic

general-structure

contains an instance of PrimitiveGeneraiStructure

specific-structure

contains an instance of PrimitiveSpecificStructure

function

describes the function of the primitive

propagation-behavior

pointer to an appropriate propagate-states method

update-states-behavior

pointer to an appropriate update-states method

normal-behavior

instance of NormalBehaviorProperties

abnormal-behavior

list of instances of AbncrmalBehavior

failures

pointers to instances of SpecificFailureCase

Table 4.17 Description of Object Class PrimitiveGeneralStructure

Class: PrimitiveGeneralStructure

Class Variables

Description

in-subsystem

subsystems that contain the primitive

in-fluid-path

fluid paths that contain the primitive

in-schematic

schematics that contain the primitive

input-gauge-list

list of instances of Gauge on the input side of the
primitive

output-gauge-list

list of instances of Gauge on the output side of the
primitive

have a common general structure but a different specific structure (Tables 4.18 and 4.20).

Simple primitives have a single fluid flowing in and out of them. They use
SimplePrimitiveSpecificStructure, a subclass of PrimitiveSpecificStructure, to define their
structure. Descriptions of five class variables of SimplePrimitiveSpecificStructure are
provided in Table 4.19. Three of these variables define the structure of a simple primitive
in terms of the names of the components on its input and output side, and the name of the
fluid flowing through it. In addition, the state information is stored in variables input-
from and output-to as lists of instances of type StateVariable. Each instance of StateVariable

stores state information of a single connection on either side of the primitive.

Composite primitives have two fluids flowing through them. They use

CompositePrimitive SpecificStructure, the second subclass of PrimitiveSpecificStructure to
define their structure. Descriptions of nine class variables of

Composite PrimitiveSpecificStructure are provided in Table 4.21. As in the case of simple
primitives, these variables define the structure of a composite primitive separately along
the two fluid paths in terms of the names of the components on input and output sides, and
the names of the fluids flowing through it. The state information for a composite primitive
along the two fluid paths is stored in variables input-from-fluid-1, input-from-fluid-2,
output-to-fluid-1 and output-to-fluid-2 as lists of instances of type StateVariable.

StateVariable class of objects store state information along each connection between
components. They are used to describe the state information by both simple and composite
primitives. A description of the six class variables used to store this information is
provided in Table 4.22. For each connection, these variables store the name of a connected
component, the weighted distribution of fluid by mass, and the three state values of
pressure, temperature and flow or level. These state values change as the system states
evolve with time during simulation. In addition, the variable gauge stores instances of

Gauge as pointers to gauges that lie along the connection.

Table 4.18 Description of Object Class SimplePrimitive

Class Variables

Class: SimplePrimitive

Subclass of: Primitive

Description

specific-structure

an instance of SimplePrimitiveSpecificStructure

propagation-behavior

pointer to propagate-states method for simple
primitives

Table 4.19 Description of Object Class SimplePrimitiveSpecificStructure

Class: SimplePrimitiveSpecificStructure

Subclass of: PrimitiveSpecificStructure

Class Variables

Description

input-components

components attached to the primitive on the input
side

output-components

components attached to the primitive on the output
side

input-from

list of instances of StateVariabie. Each instance
stores state information concerning a single input
connection of the primitive

output-to

list of instances of StateVariable. Each instance
stores state information concerning a single output
connection of the primitive

fluid

fluid in input and output connectors of the primitive

Table 4.20 Description of Object Class CompositePrimitive

Class: CompositePrimitive

Subclass of: Primitive

Class Variables

Description

specific-structure

an instance of CompositePrimitive SpecificStructure

propagation-behavior

pointer to propagate-states method for composite
primitives

Table 4.21 Description of Object Class CompositePrimitive SpecificStructure

Class: CompositePrimitiveSpecificStructure

Subclass of: PrimitiveSpecificStructure

Class Variables

Description

input-components-fluid-1

components attached to the primitive on the input
side along fluid-1

input-components-fluid-2

components attached to the primitive on the input
side along fluid-2

output-components-fluid-1

components attached to the primitive on the output
side along fluid-1

output-components-fluid-2

components attached to the primitive on the output
side along fluid-2

input-from-fluid-1

list of instances of StateVariable

input-from-fluid-2

list of instances of StateVariable

output-to-fluid-1

list of instances of StateVariable

output-to-fluid-2

list of instances of StateVariable

fluid-1

fluid-1

fluid-2

fluid-2

Table 4.22 Description of Object Class StateVariable

Class: StateVariable

Class Variables Description
connected-component name of connected component
flow-or-level flow or level (state value)
pressure pressure (state value)
temperature temperature (state value)
weight weighted distribution of fluid by mass along the
connection
gauges list of instances of Gauge along the connection

100

Function

Function contains a description of the role played by the primitive in achieving the overall

system goal. This information is extracted from a data file and stored as text.

Propagation-behavior

Propagation-behavior stores a pointer to an appropriate propagate-states method. Simple
and composite primitives have a different propagate-states method that are used for

simulating state evolution in Turbinia.

Normal-behavior

Normal-behavior stores an instance of a subclass of NormalBehaviorProperties (Table 4.23).
NormalBehaviorProperties has several subclasses and depending upon the subclass the
simple and composite primitives are further categorized as capacitor, conduit, controller,
transducer, gain, phase-changer, sink, source, source-sink, reactor, double-gain,
converter or heat-exchanger. Apart from heat-exchanger which is a composite primitive,
the rest are simple primitives. Thus, Capacitor, Conduit, Controller, Transducer, Gain,
PhaseChanger, Sink, Source, SourceSink, Reactor, DoubleGain, and Converter are subclasses
of SimplePrimitive, and HeatExchanger is a subclass of CompositePrimitive. Some subclasses
of NormalBehaviorProperties used for simple and composite primitives are described in
Tables 4.24 through 4.27.

Update-states-behavior
Update-states-behavior stores a pointer to an appropriate update-states method. Each

subclass of SimplePrimitive and CompositePrimitive is associated with a different update-

states method that is used to compute the state value during each iteration of the simulation.

101

Table 4.23 Description of Object Class NormalBehaviorProperties

Class: NormalBehaviorProperties

Class Variables Description

state-type stores the state type, i.e., pressure, temperature or
flow which gets affected by the primitive

Table 4.24

(a) Description of Object Class Capacitor

Class: Capacitor

Subclass of: SimplePrimitive

Class Variables Description

normal-behavior contains an instance of a subclass of
CapacitorBehaviorProperties

update-states-behavior pointer to update-states method for capacitors

(b) Description of Object Class CapacitorBehaviorProperties

Class: CapacitorBehaviorproperties
Subclass of: NormalBehaviorProperties

Class Variables Description

capacitance value of capacitance

102

Table 4.25

(a) Description of Object Class Controller

Class: Controller

Subclass of: SimplePrimitive
Class Variables Description
normal-behavior contains an instance of a subclass of

ControllerBehaviorProperties

update-states-behavior pointer to update-states method for controllers

(b) Description of Object Class ControllerBehaviorProperties

Class: ControllerBehaviorProperties

Subclass of: NormalBehaviorProperties

Class Variables Description

gain-value value of gain

103

Table 4.26

(a) Description of Object Class Reactor

Class Variables

Class: Reactor

Subclass of: SimplePrimitive

Description

normal-behavior

contains an instance of a subclass of
ReactorBehaviorProperties

update-states-behavior

pointer to update-states method for reactors

(b) Description of Object Class ReactorBehaviorProperties

Class: ReactorBehaviorProperties

Subclass of: NormalBehaviorProperties

Class Variables

Description

specific-energy

value of specific energy

104

Table 4.27

(a) Description of Object Class HeatExchanger

Class: HeatExchanger

Subclass of: CompositePrimitive

Class Variables

Description

normal-behavior

contains an instance of a subclass of
HeatExchangerBehaviorProperties

update-states-behavior

pointer to update-states method for heat exchangers

(b) Description of Object Class HeatExchangerBehaviorProperties

Class: HeatExchangerBehaviorProperties

Subclass of: NormalBehaviorProperties

Class Variables

Description

heat-ratio

value of heat ratio

106

Abnormal-behavior

Abnormal-behavior stores knowledge of component's behavior under specific failure
situations. This knowledge is stored in instances of AbnormalBehavior (Table 4.28 a and b).
Each of these instances store the information concerning a single failure such as
symptom, cause, na 1es of affected components and parameter values needed by Turbinia
to simulate abnormal system behavior. The number of such instances stored for each
component is the same as the number of different failures concerning the component
known to the instructional system. When a new failure concerning a component is to be
added, a new instance of AbnormalBehavior is created with data encapsulated to simulate the

system behavior associated with the failure.

Failures

Failures stores knowledge of specific cases of failure in the component known to the
instructional system. This knowledge is stored in instances of SpecificFailureCase
discussed later. Vyasa uses this knowledge to perform pedagogical functions. When new
cases of failure are to be incorporated in the instructional system, a new .nstance of

SpecificFailureCase is created and added to the list of failures for the component.

106

Table 4.28

(a) Description of Object Class AbnormalBehavior

Class: AbnormalBehavior

Class Variables Description

failure-number a number given to failure. Each failure is
identified by this number

initial-condition description of the initial conditions such as speed of
ship just prior to failure

initial-symptom symptoms initially observed

cause name of the failed component and the mode of
failure

affected-components list of paired associations. Each pair consists of a

name of affected component and an instance of
FailureEffect

(b) Description of Object Class FailureEffect

Class: FailureEffect

Class Variables Description
affected-fluid-path name of the affected fluid path
input-or-output input or output depending upon whether input or

output states are affected

component name of the component directly affected by failure
state-type the state type affected by the failure
abnormal-state-parameter affected state value

delay-parameter number of simulation iterations before the

component is affected

107

Gauges

The three types of gauges in Turbinia: pressure, temperature and level, are instances of
Gauge. The seven variables of Gauge are described in Table 4.29. Three of these variables
store information related to a gauge such as its type, number, and reading. The names of
components on either side of the gauge, and the resource ID of the gauge-icon that

represents it are also stored in the instance variables of a gauge.

The variable linked-graphic-objects stores a list of paired associations to link the gauge
with the graphical objects that contain the icon representing the gauge in various
schematics. Each paired association consists of a schematic name and an instance of a

graphical object that contains the gauge icon in the paired schematic.

Icons

There are several icons used by Turbinia-Vyasa. Information concerning these icons such
as their resource ID, the text that is printed on them, the graphical objects that represent
these icons in schematics, and their response to user interaction is contained in objects of
the type lconData (Table 4.30).

Representation of failure knowledge in Vyasa is discussed next. There are two types of

representations used for failure knowledge: one to represent general abnormal system

behavior associated with each failure mode and the other to represent specific failures.

108

Table 4.29 Description of Object Class Gauge

Class: Gauge

Class Variables Description

type pressure, temperature, flow or level

gauge-number gauge number

on-input-side-of-components components that have the gauge on their input side

on-output-side-of-components components that have the gauge on their output side

gauge-reading gauge reading

gauge-icon-id resource ID of icon that represents the gauge

linked-graphic-objects list of paired associations. Each pair contains the
name of a schematic and an instance of
GaugeGraphicObject that represents the gauge in the
schematic

Table 4.30 Description of Object Class IconData

Class: IconData

Class Variables Description
icon-id resource ID of icon
printed-text text printed on icon
linked-graphic-object list of paired associations. Each pair contains the

name of a schematic and an instance of
GeneralGraphicObiject that represents the icon in the
schematic

icon-click-response pointer to function to respond to a mouse click

109

Failure Modes

The system behavior associated with component failure modes is described in instances of
FailureMode class of objects (Table 4.31). There are four failure-mode objects, one for each
of the four failure types: blocked-shut, stuck-open, leak-in, and leak-out. Knowledge about
a failure mode represented in these objects includes information about the upstream and
downstream system behavior along the gas and liquid paths, the name of the failure - ,de

and the resource ID of the icon used to represent the failure mode.

Each of the two failure-mode variablés, gas and liquid, contain an instance of
ExpectedAbnormalBehavior (Table 4.32). This instance describes the expected abnormal
behavior for the failure mode and the type of components that curtail the propagation of
abnormal behavior along the affected fluid paths.

Specific Failures

Knowledge of the individual faults in the component is stored in objects of class

SpecificFailureCase. Variables of SpecificFailureCase are described in Table 4.33.

Each instance of SpecificFailureCase contains information relevant to the failure such as
the symptom, the name of the failed component and the mode of failure. The expected
upstream and downstream abnormal system behavior due to the fault, the gauges that show
this behavior, and the names of the components that curtail the propagation of this behavior
away from the malfunctioning component are also stored within the object. In addition, the
encapsulated knowledge of specific failures includes information concerning affected
schematics, subsystems, fluid paths, and gauges along with explanations of cause-effect
associations. The diagnostic tests that strengthen or weaken the likelihood of this specific

failure are also stored along with the rest of the information.

FailureTwo shown in Table 4.34 is an instance of SpecificFailureCase. This failure
concern:s a blocked shut feed water regulator. A blocked shut feed water regulator causes
the level in the boiler drum to fall, which is observed as the initial symptom and is the first
indication of the existence of a problem. Since the blocked shut feed water regulator is in
the liquid path, the feed water level upstream in the deaerating feed tank is expected to rise
as effects of failure propagate away from the regulator. Similarly, with time, the level

downstream in the boiler drum is expected to fall further. These expected abnormalities in

110

Table 4.31 Description of Object Class FailureMode

Class: FailureMode

Class Variables Description
name name of failure mode
icon resource ID of icon that represents the failure mode
gas an instance of ExpectedAbnormalBehavior
liquid an instance of ExpectedAbnormalBehavior

Table 4.32 Description of Object Class ExpectedAbnormalBehavior

Class: ExpectedAbnormalBehavior

Class Variables

Description

upstream-behavior

list of affected state upstream and its qualitative
value

downstream-behavior

list of affected state downstream and its qualitative
value

upstream-behavior-limited-by

primitives upstream that curtail propagation of
abnormal behavior

downstream-behavior-limited-by

primitives downstream that curtail propagation of
abnormal behavior

11

Table 4.33 Description of Object Class SpecificFailureCase

Class: SpecificFailureCase

Class Variables

Description

failure-number

a number given to failure. Each failure is
identified by this number

symptom

symptoms initially observed

cause

name of the failed component

failure-mode

mode of failure

upstream-behavior

upstream affected state and its qualitative value

downstream-behavior

downstream affected state and its qualitative value

upstream-behavior-limited-by

component upstream that curtails propagation of
abnormal behavior

downstream-behavior-limited-by

component downstream that curtails propagation of
abnormal behavior

upstream-behavior-gauge

upstream gauge number and its qualitative value
that shows the abnormal system behavior

downstream-behavior-gauge

downstream gauge number and its qualitative
value that shows the abnormal system behavior

affected-subsystems

names of affected subsystems

affected-fluid-paths

names of affected fluid paths

affected-schematics

names of affected schematics

affected-components

names of affected components

affected-gauges

affected gauges along with cause-effect
explanations

hypothesis-strengthening-tests

diagnostic tests that strengthen the belief in this
failure

hypothesis-weakening-tests

diagnostic tests that strengthen the belief in this
failure

112

Table 4.34 Description of *FailureTwo*

Object: *FailureTwo*
Instance of: SpecificFailureCase
Instance Variables Value
failure-number 2
symptom "When speeding up the ship, boiler level drops low"
cause "Feed-water regulator is stuck closed"
failure-mode "blocked-shut”
upstream-behavior ((flow-or-level high))
downstream-behavior ((flow-or-level low))
upstream-behavior-limited-by (deaerating-feed-tank)

downstream-behavior-limited-by |{(deaerating-feed-tank)

upstream-behavior-gauge (#<flow-or-level-gauge 3955028> high)
downstream-behavior-gauge (#<ﬂow-or-]evel-gaug 3939780> low)
affected-subsystems (feed-water-preheating-subsystem

steam-generation-subsystem
combustion-subsystem
power-generation-subsystem
steam-condensation-subsystem)

affected-fluid-paths (feed-water flue-gas combustion-air
superheated-steam desuperheated-steam steam
main-condenser-hot-fluid
main-condenser-cold-fluid condensate)

affected-schematics (steam-schematic boiler-schematic
feed-water-schematic)

affected-components {drum tubes economizer superheater)

affected-gauges affected gauges along with cause-effect
explanations is shown on the next page

hypothesis-strengthening-tests ((56 low) (58 high))

hypothesis-weakening-tests ((56 normal) (56 high) (58 normal) (58 low))

113

List of affected gauges along with cause-effect explanations for *FailureTwo*:

((58 (slightly-high high) "The speed of the ship is increased by increasing the mass flow
rate of steam to the turbines. When the steam demand from the boiler increases, the steam
pressure in the drum decreases. This sets the boiler combustion control mechanism into
operation. The job of the combustion control mechanism is to increase the quantity of
combustion air and fuel to the boiler. Also, when the mass flow rate of steam from the boiler
is increased, the boiler feed water control mechanism has to adjust the flow rate of feed
water to maintain a mass balance of flow into and out of the boiler. When the feed water
regualtor is stuck, the feed water control mechanism is unable to increase the feed water
flow rate. Such a failure may be regarded as an example of a blocked shut valve. Because
the feed-water-regulator does not permit an increase in the feed water flow rate, the
upstream water level in the deaerating-feed-tank rises above the normal value.")

(56 (low) "The blocked-shut feed-water-regulator causes the water level in the steam

drum, downstream, to fall below the normal level.") (7 (slightly-low) "The steam pressure
in the boiler drum also decreases when the steam demand is increased. The steam
pressure decreases further as the level of water in the drum continues to fall. The
combustion control mechanism tries to increase the steam generation rate to build up the
steam pressure. Even then the steam saturation pressure in the drum may remain below
normal.”)

(64 (slightly-high) “Since the water level in the drum continues to fall, the saturation
pressure of steam in the drum keeps on decreasing. The combustion control mechanism
tries to increase the steam generation rate to build up the steam pressure. Therefore, the
fuel oil flows into the burner at a rate which is higher than the normal rate for this
operating condition."”)

(1 (slightly-high) "The combustion control mechanism is also responsible for pumping
more airinto the burner to support combustion of excess fuel.")

(66 (slightly-low) "As the fuel flow rate is increased, the flow level in the settling tank
falls below normal.”)

(2 (slightly-high) "The higher than normal combustion air pressure propagates towards
the burner.”)

(3 (slightly-high) "The higher than normal combustion air pressure propagates past the
burner.”)

(46 (high) "Since the available heat energy is now used to heat less feed water, more heat
is consumed in superheating steam at constant pressure in the superheater.”)

114

(44 (slightly-high) "Since the available heat energy is now used to heat less feed-water in
the economizer, the feed-water temperature at drum input is higher than normal”)

(42 (slightly-high) "With less feed-water to heat in the economizer, the flue gas
temperature at the air-heater outlet rises”)

(48 (slightly-high) "Higher flue-gas temperature causes an increase in combustion-air
temperature during preheating in the air-heater™)

(45 (slightly-high high) "Higher superheated-steam temperature propagates to
desuperheater as higher desuperheated-steam temperature”)

(61 (fluctuating) "Level fluctuates in the deaerating-feed-tank--distillate-tank--atmos-
drain-tank feed-back loop to compensate for level variations in the deaerating-feed-
tank")

(67 (fluctuating) "Level fluctuates in the deaerating-feed-tank--distillate-tank--atmos-
drain-tank feed-back loop to compensate for level variations in the deaerating-feed-
tank")

(55 (slightly-high high) "The higher superheated-steam temperature also causes the steam
temperature at Ip-turbine exit to be higher than normal”))

115

system behavior can be observed on the level gauges mounted on the deaerating feed tank
and the boiler drum. Over time, the effects of the failure can propagate to several
subsystems, fluid paths, schematics and components. When this happens, more gauges
begin to show abnormal readings. These readings, when observed, can strengthen a
troubleshooter's belief that a blocked shut feed water regulator is in fact responsible for the
abnormal system behavior. On the other hand, if the level gauges on the deaerating feed
tank and the steam drum do not reflect the expected behavior, it should weaken a
troubleshooter’s belief that the feed water regulator has failed in a blocked shut mode. This
detailed knowledge concerning the blocked shut feed water regulator is encapsulated in

FailureTwo.

Finally, in Vyasa, the knowledge concerning evaluation and rectification of student's
misconceptions is represented as rules. These rules are organized in the instructional
module of the tutor in several units called knowledge sources. There are knowledge
sources for recognizing and understanding student actions, updating the student model,
evaluating misconceptions and presenting instructions to rectify the misconceptions. The
overall tutoring objective of Vyasa when operating in the active mode is achieved by the
coordinated efforts of these individual knowledge sources. A blackboard-like control
architecture which captures the dynamic evolution of tutor and student behavior is
responsible for coordinating the efforts of these knowledge sources. A description of this

control architecture is provided next.

Control Structure

Several blackboard models have been developed in the past to represent complex control
structure of problem solving activity (Hayes-Roth, 1985, Cohen et al., 1982). Each of these
models consists of a global data structure called the blackboard and a number of specialist
programs. These programs have access to the information on the blackboard and are at
liberty to utilize and refine the information as well as post new information on the
blackboard. In all these models, control of processing information from the blackboard is
asynchronous and opportunistic. In other words, the specialist programs do not post
information in a particular order and they use information from the biackboard whenever

the information appears useful to them.

Some applications of blackboard architecture use static input like HEARSAY-II speech
understanding program of Hayes-Roth (1985). However, Nii (1982, 1986) in the HASP

116

system and Rubin et al. (1987) in OFMspert have used blackboards with continuous stream
of dynamic data. In OFMspert, the blackboard has been used to interpret interaction data

and infer operator intents.

Turbinia-Vyasa uses a blackboard-like architecture for high level control and planning of
pedagogical functions. It consists of a blackboard object and several rule-based knowledge
sources that can access information posted on the blackboard and make changes to it
(Figure 4.10). The blackboard object is global data structure that contains information
organized at three levels of abstraction: state of the instructional system, tutor behavior

and student behavior. The knowledge sources are invoked when preconditions necessary
to activate them are posted on the blackboard. Together, the blackboard and the knowledge
sources play an important role in helping Vyasa evaluate and provide help to rectify
student misconceptions. Each component of this control architecture is described in detail

next.

Blackboard

The blackboard is an instance of BlackBoard. The class variables of BlackBoard are shown
in Table 4.35. Most of the variables of BlackBoard store information concerning the state of
the instructional system. The state of the instructional system is defined in terms of the
tutor mode, the state of the simulation, the current displays, time spent by the student in the
different modes of interaction and the pending events. The tutor can be in two modes:
active or passive. The simulation can be in three states: running, halted or end-of the-
session. The current displays are the schematics and tutor dialogs that are visible to the
student. The time spent by the student in the different modes of interaction includes the
time elapsed since the start of the simulation and the time since the student last invoked the
passive tutor. The pending events are the pedagogical functions to be performed next based
on the current state of information on the blackboard (See Table 4.36).

The blackboard also stores complete information related to the student's last action. This
information is stored in an instance of StudentAction. Variables of StudentAction are
described in Table 4.37. These variables contain information such as the type of action, the
time at which it took place, the item selected, mouse location and the schematic or the dialog
box in which the interaction occured. In addition, information concerning the system
response to the student action is also recorded. After every new action, information

concerning the previous action is transferred to an output file.

117

State of the
instructional
system

. Student behavior
[Tutor behawor] (student model)

Blackboard

!

K rectify recognize
misconceptions actions
evaluate
misconceptions solicit
hypotheses
compute
suspicions provide
advice
\ Knowledge sources j

Figure 4.10 Control Architecture

118

.

Table 4.35 Description of Object Class BlackBoard

Class Variables

Class: BlackBoard

Description

tutor-mode

current tutor mode: nil, passive, active

simulation-state

current state : running, halted or end-of-session

simulation-iteration-number

number of current iteration

simulation-start-time

clock time at which the simulation started

tutor-interaction-begin-time

If currently interacting with tutor, clock time at
which current interaction with tutor started

total-tutor-interaction-time

total time spent by the student interacting with the
tutor in the current session

active-schematic

schematic currently displayed

active-passive-tutor-dialogs

passive tutor dialogs currently displayed

state-of-student

one of: troubleshooting, requesting to diagnose,
adding hypotheses on request, adding hypotheses
voluntarily, deleting hypothesis or seeking advice

selected-subsystem

subsystem selected by student

selected-fluid-path

fluid path selected by student

selected-component

component selected by student

selected-mode-of-failure

failure mode selected by student

hypothesis-to-add

the hypothesis to be added to the list of hypotheses

hypothesis-to-delete

the hypothesis to be deleted from the list of
hypotheses

hypothesis-to-advice

the hypothesis for which advice is sought

pending-events

list of instances of PendingEvent

student-action

an instance of StudentAction

tutor-behavior

an instance of TutorBehavior

student-behavior

an instance of StudentBehavior

119

Table 4.36 Description of Object Class PendingEvent

Class: PendingEvent

Class Variables Description
type pointer to the next pedagogical function
time time at which the event must take place
message context-specific message for the pedagogical
function

Table 4.37 Description of Object Class StudentAction

Class: StudentAction

Class Variables Description
type one of the nine types of valid actions
schematic schematic where the action was taken
tutor-dialog tutor dialog where the action was taken
error-dialog error dialog where the action was taken
time time at which the action was taken
simulation-iteration-number the iteration number at which the action was taken
mouse-location location of the cursor when mouse was clicked
selected-item name of the item selected
data any action or context specific data that may be
peeded, e.g., gauge reading wher the selected item
is a gauge
120

The blackboard may, however, retain some information related to previous student
actions. This is done because the context of new actions is often established from previous
actions. For example, while interacting with the passive tutor, there are queries that a
student poses in two steps which require the tutor to remember the information conveyed in
the first step until the second step is taken. Inquiring about a subsystem's function is one
such query. The formulation of this query involves selecting the subsystem name from an
interactive dialog and then choosing the query concerning the subsystem's function from
another interactive dialog. In order to correctly respond to all such two step queries, the

tutor must remember the information provided by the student in the first step.

Furthermore, the interactive interface of passive tutor is designed to give the student the
flexibility to ask multiple questions with reference to a single context. That is, multiple
questions can be asked concerning the same subsystem without having to re-select the

subsystem. This, however, means that the tutor must remember the selected subsystem to

answer all subsequent queries and must do so till the student decides to change the context.

Since the tutor is responsible for guiding the student to formulate queries, the knowledge of
previous actions that must be retained to understand the complete query is known to the
tutor. This information essential to comprehend future actions is stored on the blackboard
as long as it is needed. Thus, for the two step query concerning subsystem function, the
name of the selected subsystem is retained in an instance variable of the blackboard till the
student has no further queries about the selected subsystem. There are numerous such
instance variables of the blackboard that are used to provide proper context to subsequent

student actions.

In addition, the blackboard captures the dynamic evolution of the tutor and student
behavior. This information is stored in instances of TutorBehavior and StudentBehavior
shown in Tables 4.38 and 4.39. While most of the student behavior evolves dynamically,

some of the tutor behavior is derived from the tutor's knowledge of the failures.

121

Table 4.38 Description of Object Class TutorBehavior

Class: TutorBehavior

Class Variables

Description

failure-diagnosed

true or false; true when student is successful

current-failure

pointer to an instance of SpecificFailureCase that
contains information related to current failure

structural-misconceptions-rectified

list of structural misconceptions rectified; i.e.,
all unaffected schematics investigated

functional-misconceptions-rectified

list of functional misconceptions rectified; i.e.,
unaffected subsystems and fluid paths
investigated

behavioral-misconceptions-rectified

list of behavioral misconceptions rectified; i.e.,
hypotheses and the diagnostic tests used as
evidence against the hypotheses

hypotheses-aided

hypotheses on which help was sought and the
advice given

investigative-actions-since-lsm

number of investigative actions since structural
misconception was identified

investigative-actions-since-lfm

number of investigative actions since functional
misconception was identified

call-for-schematic-actions-since-lsm

number of call for schematic actions since
structural misconception was identified

summary-of-hypotheses-refinement

hypotheses provided by the student in the order
conveyed.

current-hypotheses

current student hypotheses. Each hypothesis
consists of a component name and the suspected
mode of failure

most-suspected-subsystem

name of most suspected subsystem

most-suspected-fluid-path

name of the most suspected fluid path

current-misconceptions

current hypotheses being pursued inspite of
evidence available to reject them

evidence-against-current-hypotheses

all possible diagnostic tests that serve as
evidence against current hypotheses

122

Table 4.39 Description of Object Class StudentBehavior

Class Variables

Class: StudentBehavior

Description

schematics-viewed

schematics in the order viewed

subsystems-investigated

subsystems in the order investigated

fluid-paths-investigated

fluid paths in the order investigated

gauges-investigated

gauge numbers investigated and gauge value
observed at the time of investigation

call-for-schematic-actions

all call for schematic actions

investigative-actions

all investigative actions

informative-actions

all informative actions

diagnose-request-action

all diagnose request actions

diagnose-actions

all diagnose actions

current-hypotheses

current student hypotheses. Each hypothesis
consists of a component name and the suspected
mode of failure

Tutor Behavior

During any training session, an instance of TutorBehavior consists of information
obtained either from the tutor's knowledge of the failures or from the knowledge sources in

the instructional module.

The information obtained from tutor's knowledge of the failures remains unchanged for
the problem solving session. This information concerns current failure and is used by the
tutor to evaluate student performance. It includes the mode of failure, affected subsystems,
fluid paths, schematics, components and gauges, and the upstream and downstream

abnormal behavior associated with the failure.

On the other hand, the information posted by the knowledge sources is dynamic and
concerns the student. It includes information solicited by the knowledge sources from the
student such as the student's initial hypotheses and current hypotheses. It also includes
summary of hypotheses refinement, evidence against current hypotheses, and the most

suspected subsystem and fluid path as inferred from student actions.

In addition, the existing misconceptions of the student and those rectified during the
current session are posted by knowledge sources that evaluate and rectify misconceptions.
A record of the actions taken since the various types of misconceptions were last identified

is also maintained in the instance of TutorBehavior.
Student Behavior

Additional information concerning actions taken by the student is stored in an instance of
StudentBehavior which is updated dynamically by knowledge sources after every student
action. This information consists of the schematics, subsystems, fluid paths, components
and gauges explored or investigated by the student and the order in which it happened
along with a detailed description of each student action. The detailed information includes

the type of the action and where and when it took place.
Knowledge Sources

There are several knowledge sources that use the blackboard as a globally shared database

and often compete with each other to modify information on the blackboard. These

124

knowledge sources that also determine and execute the appropriate pedagogical functions

of the tutor based on the current status of the instructional system are described below.

Knowledge sources for recognizing actions

When a student takes an action, nine knowledge sources, each capable of recognizing one
of the nine types of valid interactions described earlier, compete with each other to
recognize the new action. The knowledge source that succeeds in recognizing the action
updates the student behavior on the blackboard by posting information relevant to the new
action. A complete description of the knowledge contained in these knowledge sources was

provided under "Knowledge of Student Actions" (page 67).

Knowledge sources for computing suspicions

After the new action is posted on the blackboard, there are knowledge sources that compute
the subsystem and fluid path most suspected by the student. This information concerning
the most suspected subsystem and fluid path is then updated on the blackboard. A complete
description of the knowledge contained in these knowledge sources and the method of
computing the most suspected subsystem and fluid path was given under "Knowledge to
Update the Student Model” (pages 67- 68).

Knowledge sources for evaluating misconceptions

There are three knowledge sources, each capable of evaluating one of the three types of
misconceptions known to Vyasa. These knowledge sources analyze the new information
posted on the blackboard after each student action and compete with each other to identify
misconceptions. If a misconception is identified, it is posted on the blackboard. A complete
description of the knowledge contained in these knowledge sources was provided under

"Knowledge to Evaluate Misconceptions” (pages 68-69).

Knowledge sources for rectifying misconceptions

After the identified misconception is posted on the blackboard, knowledge sources that
rectify misconceptions compete with each other until the one that can rectify the posted
misconception is activated. This knowledge source delivers the relevant instructional

material and keeps a record of its activities posted on the blackboard to be used to structure

125

new instructions. A complete description of the knowledge contained in these knowledge

sources was provided under "Instructional Knowledge" (pages 69-74).

Knowledge source for soliciting hypotheses

From time to time, based on the investigative actions conducted by the student, this
knowledge source solicits information concerning failure hypotheses that the student is
pursuing. After soliciting this information, this knowledge source updates the student's

current hypotheses on the blackboard.

Knowledge sources for aiding hypothesis

In addition to the knowledge sources described above, there are two knowledge sources that
help the students with their failure hypothesis. One uses tutor's knowledge of specific cases

of failure and the other uses tutor's knowledge of failure modes.

The first knowledge source is invoked when help is sought for failure hypothesis that
matches one of the specific cases of failure known to Vyasa. For such hypothesized failures,
knowledge concerning affected gauges is available to the tutor. This knowledge is used to
determine whether the hypothesized failure is probable based on the observed symptoms. If
so, the tutor suggests more tests to strengthen the student's belief in the hypothesis. If not, the
tutor suggests tests to weaken the student's belief in the hypothesis. Also, since the
knowledge source has access to the information displayed on the blackboard, it can
determine if evidence has already been gathered to eliminate suspicion from the
hypothesis. If so, the student is advised to drop the hypothesis from the list of suspected

components.

The second knowledge source is invoked when the knowledge of the hypothesized failure is
unavailable to the tutor. Instead, knowledge of the general modes of failure is used by the
knowledge source to generate advice. For example, if the hypothesized failure involves
blocked shut mode of failure, the knowledge source first determines the fluid path through
the suspected component. Then, using its knowledge of modes of failure it determines the
expected abnormal behavior associated with the fault. Next, using the knowledge of
available gauges, the knowledge source determines if the expected abnormal behavior is
observable under the current situation. If so, it suggests checking the relevant gauges to

strengthen or weaken the student's belief in the hypothesis.

126

This concludes the section on the blackboard architecture used by Vyasa to perform its
functions. Apart from this control architecture, organization and representation of
knowledge in Turbinia-Vyasa were also described in this chapter. However, knowledge
organization that captures system structure, function, and behavior under failed and
normal states, pedagogical knowledge that concerns evaluation and rectification of
misconceptions, instructional knowledge that concerns content, form and time of
presentation of instructions, and a control architecture for planning the pedagogical
functions of the tutor are insufficient for the success of a tutoring system. Properly
designed interactive interfaces also play a major role in imparting knowledge about the
system and its operation during normal and abnormal situations. In the next chapter, the
interface of Turbinia-Vyasa and details of student interaction witi: the instructional

system are described.

Summary

In this chapter, Turbinia-Vyasa, an implementation of the ITS architecture proposed in
Chapter III was described. First, the marine power plant domain of the instructional
system was described. The discussion of the domain included a description of the various
subsystems in the power plant and the role they play in accomplishing the goal of power
production. Components of the automatic boiler control system that regulate the operating
conditions of the control devices were also described. In addition, salient features of the
troubleshooting task in this domain and the educational background of the student trainees
were discussed. Next, organization of knowledge in Turbinia-Vyasa was described. The
discussion of knowledge organization included a description of the various components of
knowledge represented in the instructional system. This was followed by a discussion of
implementation details that focused on methods of knowledge representation employed in
Turbinia-Vyasa. Finally, a control architecture was described that is used by the

instructional system to plan the pedagogical functions of the tutor.

127

CHAPTER V

STUDENT-TUTOR INTERFACE OF TURBINIA-VYASA

The student-tutor interface of Turbinia-Vyasa and the valid forms of interactions at this
interface are described in this chapter. A brief description of the various elements of the
interface is provided, followed by a discussion of the operator interactions with the

simulator and the tutor in both the passive and active modes.

The student-tutor interface of Turbinia-Vyasa has been developed on a dual screen Apple
Macintosh II workstation. The dual screen configuration consists of one 19" color monitor
and a 13" color monitor. In this set up, the larger monitor is the left screen and the smaller
monitor is the right screen. A single button computer mouse that can point to all locations
on both screens is the only input device. The mouse is used to interact with the direct
manipulation interface to both Turbinia and Vyasa. All actions at the interface involve
moving the mouse cursor to a desired location and clicking on the mouse button. In all
cases, a single click is adequate. All valid user actions have appropriate response while

invalid actions are ignored by the system.

The Interface

The joint interface to Turbinia-Vyasa consists of an interface to the simulator Turbinia,
and dialogs to interact with Vyasa. Turbinia's interface consists of seven schematic
windows, a schematic menu, a requests menu, a symptom dialog, several error dialogs
and a clock. Student interaction with Vyasa is accomplished by multiple levels of

hierarchically organized passive tutor help dialogs and a hypothesis menu.
The seven schematics display the physical connections between the components of the
power plant. They are used to investigate components and probe gauges attached to these

components.

128

The schematic menu displays seven icons each representing one of the seven schematics.

These icons are used to display the schematics on the left screen.

The requests menu has three icons. The first icon is used to request for an opportunity to
diagnose the fault, the second to temporarily halt the simulation and the third to resume the

simulation. When working without Vyasa, the stop and resume icons are disabled.

The clock displays the time left to troubleshoot the current problem. This clock is updated

every minute.

The symptom dialog shows the initial symptoms observed at the beginning of the
troubleshooting task. The error dialogs convey appropriate messages when errors are
made. The tutor dialog is used by the instructional system to communicate with the
student. The display of symptom dialog, error dialogs, or new text on the tutor dialog is

accompanied by a beep.

The passive tutor help dialogs enable the students to communicate with Vyasa and seek
information concerning the structure, function and behavior of the subsystems and the
components. Students can use the passive tutor help dialogs to explore the tutor's

knowledge-base.

The hypothesis menu has four items. Students use the hypothesis menu to communicate
information concerning their failure hypotheses to Vyasa. The first item "View" is used to
review the failure hypotheses that the student has provided to the tutor. "Add” and "Delete”

are used to modify hypotheses. "Advice” provides assistance from the tutor.
In the next section, student interaction with Turbinia and Vyasa is described. Each element
of the interface is also discussed in more detail.

Interaction with Turbinia-Vyasa
At the beginning of every training session, the dual screen Apple Macintosh II workstation
displays three menus and a clock on the large screen and a dialog box on the small screen

(Figure 5.1). The three menus on the large screen are the schematic menu, the requests

129

SU9310g Jo uonpeandyuo) [°G dangi]

udalog adaery

U9a.dds [[ewyq

110N,

=

10-3qn]

13jem)[eg

sisayiodAH

1a10g

130

menu and the hypothesis menu. A tutor dialog is displayed on the bottom edge of the small
screen. For sessions where the active mode of the tutor is not invoked, the Aypothesis menu

under the requests menu is not displayed.

Schematic menu

The schematic menu on the large screen and also shown in Figure 5.2, displays seven
icons. Each icon represents one of the seven schematics of the simulated power plant. The
names of the seven schematics are also provided in textual form above each icon. The
seven schematics are the steam, boiler, feed water, fuel oil, control air, saltwater and lube
oil. Any of the seven schematics can be accessed by the student by clicking on the icon

representing the schematic.

Requests menu

The requests menu adjacent to the schematic menu displays three icons (Figure 5.3). The
first is the diagnose icon. The student must click on the diagnose icon before identifying
the failure. By clicking on the diagnose icon, the student indicates to the instructional
system an intention to identify the component responsible for the observed abnormal

behavior.

The second icon on the requests menu is the stop icon. A click on the stop icon can halt the
simulation and put the student in a mode to interact with the passive tutor. In a session

without the tutor, a click on the stop icon produces an error message.

The third icon on the requests menu is the resume icon. The resume icon is used to restart
simulation after it has been halted to communicate with the passive tutor. In a session
without the tutor or when the student is not interacting with the tutor, the resume icon is
shown disabled. All disabled icons on the Turbinia-Vyasa interface have a yellow-brown

colored background as compared to enabled icons that are shown in gray.

Clock

The time to diagnose a fault is limited. During a session, the clock below the hypothesis
menu displays the time left to solve the current problem. This clock gets updated every

131

R flequpsts

b @
X

Figure 5.2 Schematic Menu Figure 5.3 Requests Menu

132

minute. When the clock winds down to 0 and the fault is not yet diagnosed, the simulation

stops and the student can no longer continue to diagnose.

Tutor dialog

The instructional system communicates with the student through textual messages and
instructions presented on the tutor dialog. This tutor dialog is displayed on the bottom edge
of the small monitor (Figure 5.4). All communications through this dialog box are

accompanied by a beep.

Symptom dialog

The symptom dialog shows the simulated ship's initial operating condition and the first
symptoms that indicate the existence of a problem (Figure 5.5). Troubleshooting for failure
begins after the symptom dialog appears with a beep in the center of the large screen.

The rest of this chapter is divided into two major sections to describe student's interaction
with the simulator and the tutor. The first section describes the interaction with Turbinia
and the second describes the interaction with Vyasa. Most of the examples used to describe
the interaction are related to a problem solving session that begins with the symptom dialog

shown in Figure 5.5.

133

Tuvor:

Figure 5.4 Tutor Dialog

WARNING
Initial Condition: The Ship Is Undervay At Slow Speed Of Twventy
Rpm
Symptoms: When Speeding Up To Full Speed Of Seventy Rpm

The Boiler Level Drops Low.

Figure 5.5 Symptom Dialog

134

Interaction with Turbinia

The student interacts with Turbinia through the seven schematics that display the physical
connections between components of the power plant. The seven schematics are shown in
Figures 5.6a, b, ¢, d, e, f, and g. These schematics can be accessed by clicking on the icons
in the schematic menu. Each icon in the schematic menu represents a different schematic.
The same schematic icon that is used to access the schematic also appears in the right top
corner of the schematic it represents. The features of the schematic interface of Turbinia

are discussed next, mainly with reference to boiler schematic shown in Figure 5.6b.

All the components in the schematics are represented by rectangles. The connections
between components are shown by solid lines called connectors. The direction of fluid flow
between components is shown by the arrow head on these connectors. For example, the
economizer and the drum (shown as steam-drum in the boiler schematic) have a two way
connection. The connection from the economizer to the drum represents the flow of feed

water while the connection in the reverse direction represents the flow of flue gases.

Some connectors, like the one connecting the feed water icon to the feed water regulator
(represented as f-w-regulator in the boiler schematic), have a component on one end and
an icon at the other. Such connectors represent connections between components that are in
different schematics. The icon at one end of such connectors represents the schematic in
which the connected component can be viewed. In this example, the input connector to the

feed water regulator physically originates from the hp heater in the feed water schematic.

If the student clicks on the feed water icon at the end of the input connector of feed water
regulator two things happen. First, the display switches to feed water schematic. Second,
the boiler icon on output connector from the hp heater is highlighted with a red band around
it. The highlighted boiler icon helps establish the physical connection between the hp heater
and the feed water regulator. The student can click on the highlighted boiler icon to get
back to the boiler schematic. When this is done, the boiler schematic has two feed water
icons highlighted, one connected to the feed water regulator and the other to the economizer.
This simply means that the hp heater is connected to both the feed water regulator and the

economizer in the boiler schematic.

135

onBWAYOS WENS B9

g aandig

13sWIpEe)

136

dBWAYDG Joflog q9°g aan3Lg

1wm uudﬂun

Y 52 5% uﬂauﬂu.—-flﬂ
E IneaNeE r
l 2 : ; % nu‘u-.._u-:lrl
.a .] SEKIT
Cewv) .
(axa)

no-3qny

X0Q-PuLA

Iasmia-ap

ha——

.w“ﬂ-"‘ . .. nueaw P e 31} QWO 38-18]{0q

O1}BWAYIS I9)8A\ POd] 99°G dIndiyg

v e~ _rememole]

,-501-8-:.%'!?»--&

)
INSIY-5-3

¥

dund- o

T3A-}

araqdsouny

138

orewaydg [10 [0nd PY'g 8Ind1d

s)sanbay

1wmiaz-dye

|
INS-N"

Jjswayas-jjo-jan) e

139

!

g

fSIN

s)sonboey . nUSW

OjBWIAYOS ATV [013U0)) 99°G INIL]

au_hnL

h&bucu’u‘m

uu_eov.:T

1ossudwo

——

e MMoweyls_e-jou0)

140

AR

BIEIAIA] ¢

ssapodiy

3 o . 13]003-[}0-3qu]- 1%uTRD 8-

o1jBWAYOG 1j8Mmi[eS J9°G aan3rg

w—eed M

13602-N10-3qa]-d

NoO-TI0-aqag-3

.uannwot

nua INOWIYIS-13}0M}|0S

141

dnewaydg |1 2qn] 39°G 2By

P dums-ie-2quj dums-No-aqu[dmus-{10-3QR]" qed
A
I0ea R
-InoL uiﬂanm -I-L
v v 12018
3uirea SuLwd Zure’
& YR -Krans 1n00
EBL
Jaurea Jutre?

s15anDoy

INBWIYIS-1|0-3QN}

142

Most components of Turbinia are uniquely represented in one of the seven schematics.
However, there are a few that have multiple representations. For example, the condenser
and the hp heater appear in both the steam and the feed water schematics (Figures 5.6a & c).
Additional occurences of these components in multiple schematics is indicated by
schematic icons attached to these components. Unlike other schematic icons, these do not
have a connector attached to them. If the student clicks on these icons, the display switches
to the other schematic that has the second occurence of the component. The second occurence
of the component in the new schematic is indicated by a highlighted schematic icon

attached to the component.

Troubleshooting for failure indicated by the symptoms at the beginning of the session
involves gathering information about system states. The student can collect information
concerning system states using a two-action sequence. The first action of the sequence is
an investigative action. An investigative action enables the student to display gauges, if
any, attached to a component. The second action is an informative action that allows the
student to access the actual gauge reading. The student takes an investigative action by
clicking on a component and an informative action by clicking on any gauges displayed

by the preceding investigative action.

The three types of gauges in Turbinia, pressure, temperature, and flow-or-level, are
represented by icons with letters P, T and L inscribed in them to indicate pressure,
temperature, and level respectively. Although there is no visible distinction between the
level and the flow gauges, the level gauges are mounted on the components while flow
gauges appear on the connectors between components. Level gauges in Turbinia are
attached to tanks (deaerating feed tank, fuel oil settling tank, atmospheric drain tank,
distillate tank, hotwell, and drum) and the only gauge that measures flow is located in the

fuel oil path across the strainer in fuel oil schematic (Figure 5.6d).

When the student clicks on a displayed gauge to probe its reading, an icon appears near the
gauge. This icon is a qualitative representation of the current gauge reading. Turbinia
uses five different qualitative representations of state values. These five are low, slightly
low, normal, slightly high and high: each is represented by an icon as shown in Figure
5.7.

143

LOW S-LOW NORMAL S-HIGH

HIGH

Figure 5.7 Qualitative State Representation

144

Thus, if the student clicks on the drum :in the boiler schematic, all four gauges attached to
the drum are displayed on the schematic as a result of this investigative action. There are
two pressure gauges, one on the flue gas connector to the economizer and the other on the
steam drum. There is a temperature gauge on the feed water connector from the
economizer and a level gauge on the steam drum (See Figure 5.8). Now, if ithe feed water
level in the boiler drum is low, the informative action of clicking on the level gauge
attached to the drum will result in the appearance of a low level icon below the gauge (also

shown in Figure 5.8).

Gauge readings in Turbinia change with time but the displayed gauge readings are not
dynamically updated. Therefore, the student must repeat the informative action to view the
current gauge reading. This allows the computer-based tutor Vyasa to keep track of whether

changes in the gauge readings have been observed by the student.

The student can access any displayed gauge or a gauge reading only until a new
investigative action is taken. When a new investigative action is taken, the gauges and
the gauge readings of the previously investigated component that were visible disappear.
This was done to achieve a good mapping between the operator task in the real and
simulated domains. In the real domain, components of power plant are often spread over a
large area, or sometimes in many rooms. Thus, multiple gauges cannot be viewed
together. Even when the components are located in the same room, often their sizes are

huge and it is often not possible to view gauges attached to two components at the same time.

When the student is ready to diagnose the fault, a request for conveying the diagnosis must
be submitted. This is done by clicking on the diagnose icon in the requests menu and it puts
Turbinia in a diagnose mode. After switching to the diagnose mode, Turbinia asks the
student to select the suspected component. This message is conveyed to the student through
text appearing in the tutor dialog at the bottom of the small screen (Figure 5.9). The student
can now use the same action that was earlier used to pick the component for investigation to
identify the failed component. If the student’'s diagnosis is correct, a congratulatory
message appears on the tutor dialog (Figure 5.10). Otherwise, an error dialog accompanied
by a beep is displayed over the schematic. This error dialog is shown in Figure 5.11. The
student can close this error dialog by selecting one of the two options available. The student
can either revise the diagnosis by choosing "try again” or get back to the troubleshooting

mode by choosing "investigate”.

145

wn(J wedg 8y} uo sagdner) Fumoyg drjewaydg I1aiog 8¢ 2angig

Tto-3quy

Iqam:

£3q3-12710

1geradwmay

i [mmciond—>
_ ;-3:._ET||II|_

Im-janeo)

IneA-pIad

.. _ ﬂuﬂ»naL
sisanbay + nUBKW MBWIYIS-1BN0g e e e

146

Tatwr: Pick the faulty component

Figure 5.9 Tutor's Instructions to Select the Suspected Component

Tutor: Congratulations! Your diagnosis is correct

Figure 5.10 Message of Congratulations on Correct Diagnosis

—

B Sorry, your diagnosis is incorrect. Do you
want 0 Uy again or investigate further.

o g

ﬁ‘é conm:izer — - |

Figure 5.11 Error Dialog for Incorrect Diagnosis

147

In addition to the components, connectors and schematic icons, all schematics display two
other icons that do not represent a schematic. One icon appears on the left bottom corner and
the other on the right bottom corner of all schematics. The icon on the bottom right corner is
a Georgia Tech copyright icon. This icon is disabled and has no response. The icon at
bottom left corner is a symptom icon and is used to recall the initial symptoms. Thus, the
student can access the ship's initial operating conditions and the initial symptoms at any

time.

Interaction with Vyasa

Passive Mode

When Vyasa operates in the passive mode, the student is responsible for initiating

communications with the tutor to learn about the system and the failures. Student-initiated
interaction with the tutor is accomplished by clicking on the stop icon in the requests menu.
This action halts the simulation temporarily, enabling the student to interact with the tutor

while preserving the information concerning system states.

Whenever the passive tutor is invoked, the stop and the resume icons change their
background colors. The stop icon background changes to yellow-brown indicating that it
has been disabled. At the same time, the background of resume icon turns gray indicating
that it has been enabled. The cursor too changes shape and turns into a "?". All these
changes indicate that the student is not in the troubleshooting mode and hence cannot

investigate components and view gauge readings.

When the passive tutor is invoked using the stop icon, a help-levels passive tutor help
dialog appears in the top left corner of the large monitor. This dialog box is also shown in
Figure 5.12. This dialog has seven buttons of which two are enabled. The two highlighted
buttons indicate the levels of help that the tutor can provide in the passive mode. These two
levels are the failure and system knowledge help. Using these buttons the student can
access knowledge concerning specific modes of failure, components, subsystems, and
fluid paths. The information accessed by the student is presented in textual or graphical

form.

148

L
L
o
=—= Help Categories
(curvent feilwee |
Failures
(failnxe modes | [
(compouvents)
| System l (snbsystems)
(fluid-patny) ®
Figure 5.12 Help-Levels Dialog
L
L
®
®
149
o

To access knowledge about the system, the student must choose the "system” button in the
help-levels dialog. Following the selection of the "system" button, the "components”,
"subsystems”, and "fluid-paths” buttons are enabled (Figure 5.13). These three buttons
provide the student with further options to select the type of system knowledge. When the
student selects any one of these three buttons, a new passive tutor help dialog associated
with the selected button appears next to the help-levels dialog. This new dialog also
contains several selectable items. The student can, by selecting items in the passive tutor
help dialogs, explore the entire knowledge-base of the tutor at the component, subsystem

and fluid path levels.

For instance, if the student selects the "subsystems” button in the help-levels dialog,
another dialog that lists all the subsystems in the power plant appears next to the help levels
dialog (Figure 5.14). The student can select a subsystem from the list of subsystems to
further explore the tutor's knowledge of the selected subsystem. The selection is made by
clicking on the subsystem name listed in the dialog. After the student selects a subsystem,
a dialog box listing the selected subsystem and the types of information concerning the
selected subsystem that can be accessed by the student is displayed. Figure 5.15 is an
example of such a dialog box which is displayed when the student selects the combustion
subsystem. This dialog provides the student with three options: (1) view the comronents that
make up the combustion subsystem, (2) view the fluid paths that pass through the
combustion subsystem, or (3) ask for the description of the function performed by the
combustion subsystem. If the student decides to view the components that constitute the
combustion subsystem, the button marked "show subsystem"” must be selected. A click on
"show subsystem" results in the appearance of a dialog box containing the seven schematic
icons (Figure 5.16, the grey colored buttons indicate the sequence of actions taken thus far).
Those icons that represent schematics in which combustion subsystem can be found are
highlighted in this dialog box. Since the combustion subsystem can be found in boiler and
fuel oil schematic, the boiler and the fuel oil schematic icons are the ones highlighted in
Figure 5.16. A click on any one of these icons displays the schematic represented by the
icon and highlights in red all components that constitute the combustion subsystem in that

schematic (Figure 5.17).

The sct of hierarchically organized passive tutor help dialog menus that guides the
student's exploration of system knowledge also maintains context-sensitivity and offers
substantial flexibility to the student. For example, when the student in~iires about fluid

paths in Figure 5.15, the tutor offers a choice of selecting a liquid or gas path from only

150

R EEER==T

Help Categories

[corvent tutlme |

| components |
[System) [Csubsystems)
fluid-paths

[Failures |

Figure 5.13 Help-Levels Dialog with "System" Buttons Enabled

Help Categories == Subsystems =——|

Which subsystem? Select one:
l Failures _ combuston
Foiluze | :
steam-generation
POwer-generation

@ steam-condensation
System | { subsystems) feed-water-preheating

auxiliary-steam-use

fluid -paths control-air

%

Figure 5.14 Passive Tutor Dialog to Select Subsystem

151

wsfsqng pajeafes Aeidsiq 03 dofer(100, aAlssed 91°G 9Andig

el .. Ak

[sped pruty |

“ uonxxug _

wWRSLSQUS IQ VUWISAOI v
NUINOdWOod T AVA () FUON ISIP WO YN "suoxn Lwid
£Q PRERPUT SINVWAN]IS UL 51 WRSLSQRE PAIANIS AL

100Qe 210U AOUY Of }TRA Lo DO

ITe-j]0RU0D
osn-ure s -LISIXNE
2unvIqaad-1RvA-pIIJ
UONESUIPA0OI-WERE
uoneIdwad-raaod
WONRINIIZ-UIBANE

WNSLLQRS-UORSUQWOD

:au0 133125 Jmasicqne YN

sqvd-g

nusuodwod

GapouBl aluyiny

(e

— = TR

sajnquiy waisfisgns

swa)shsqns

sajsobaje diay

o8po[mouy] peje[ey wI)sdsqng ssad0y 0} Sofer(q 10N, 9aissed G1'G dan3L g

) (mwy ((mesksas-acts
(swed prid | uonauny _

wNsLsqQus-uONSNQWod

ITe-[0QU0d

oSN -weA s -LIV[[IXNE
Suneaqad-1RvA-PI}
UOQUSUIPUCI-WENS
uonuisuad-1aacd
UonReIINIZ-urea s

[ToRsuqQurod

IDOQU AIOW AOUY O} }UvA LVWT DO

WO 133128 ;WASLSQUS YINLM

squd-pmpg
{ swmaisisqus _

GAPURE ALB{ID}

Crmrwme) (2
(Casuprs waumns

=)

=== sainquiiy wa)shsgns

|

swa)shsqgns

saniobaje) djay

152

orBWaYdg J9[log Ul pajysiydiy walsdsqng uonsnquioy) L1°G aangdiy

1neayIadn

EYNLVSE

ﬁ Toymradwmag)

1 _

wens

12dn

[—

- sisanbay J)oWayIs-13jjoq

153

among those that can be found in the inquired subsystem. Thus, knowledge about
subsystems and fluid paths does not have to be obtained independently to deduce which
fluid paths lie in which subsystems.

In general, Vyasa responds to an interaction in passive tutor help dialogs by either
highlighting the lowlighted buttons in the currently active dialog box or displaying a new
dialog box with certain items highlighted. The student can select an enabled button or any
highlighted item in the displayed dialogs to make the queries more specific. Sometimes, it
may be necessary for the student to select an item in the schematic or use the keyboard to
make the query more specific. For example, when inquiring about a component, the
student must select the component by either clicking on the component in the schematic or
typing its name using the keyboard. In any event, when a query is specific enough for
Vyasa to comprehend, it responds with an answer. The answer is presented as text in a

dialog box or as graphics in the schematics.

The flexibility in interaction with Vyasa also enables the student to alter the query at any
time. This can be done by merely discontinuing the sequence of actions necessary to
express the current query and switching to a new query by clicking on a highlighted item
in any of the displayed dialog boxes. In such cases, only the dialog boxes relevant to the

new query are kept open by the tutor while all others are closed.

Thus, the student can access tutor's knowledge of the system by following a sequence of
straightforward interactions with passive tutor help dialogs. The tutor assumes the
responsibility of guiding the student's interaction and provides lot of flexibility to the
student to express and alter queries. Figure 5.18 provides a summary of interactions with

the passive tutor help dialogs to access the different components of system knowledge.

The same help-levels dialog that is used to access knowledge of the system can also be used
to obtain information concerning failures. To do so, the student must choose the "failures”
button in the help-levels dialog shown earlier in Figure 5.12. Following the selection of the
"failures” button, all battons related to the "system” button are disabled and all visible
dialogs concerning any earlier query related to system knowledge are closed. At the same
time, the "current failures” and "failure modes” buttons are now enabled. Using the
"failure-modes” button the student can access information concerning typical system

behavior associated with each mode of failure in the liquid and gas paths (Figure 5.19).

154

Help-Levels Dialog

Subeysiems Fluid parh:

I Select component I Eelect, ﬂuid-path]
- /\\ N
(Structure) @mctio@ CBehavior) (Subsystems) (Show-pat}D

. T [Select subsystem]
A~ [Select schemati—c;]

/
7
(Show-subsystem)
D <-m o~
) o

(components)
.)utput <
I Select fluid-path I I Select schematic

Select color

IJ

D buttons in passive i: highlighted ‘tems D levels of passive
tutor help dialogs in passive tutor tutor help dialogs
help dialogs

Selection of an button/highlighted item at the end of each branch completes the query. Answer is
then presented either as text in a separate dialog box or as graphics in the schematics

Figure 5.18 Summary of Interactions with Passive Tutor Dialogs to
Access System Knowledge

a3pa[mouy] POy dunjief Aejdsi(] 03 Sorei 10In], dA1ssed 61'G 9131

22IMOS- RYUTFUY A0f [3a3]-10-A 0] weansuaocq mys paxdorg E
TUIS-RJULIUY QY [24A91-10-A07) ureansd p— \ M‘T. ((swasdeques) _ wmaeks
Cp
S2MMOs-RUypay Aoy amssard wWeANSWAOQ
ATA-Ko)es qaq anssard urvansd
£q pajmimo Jo1awgag Jolawqaq WAL qed-pmig -URTIVJ JO pow YNTA
dojneyaq wejshs (euIouqe pajIadu) I ————— Oy ——— — | saji0baj0) diey

156

Using the "current failure” button the student can bring up a clipboard that extends to the
smaller screen on the right. Figure 5.20 provides a summary of interactions with the

passive tutor help dialogs to access tutor's failure knowledge.

The clipboard presents a summary of observed results from the student's diagnostic
actions. Based on the observed gauge readings, the clipboard displays the schematics,
subsystems and fluid paths that contain the affected gauges. The extended portion of the
clipboard on the smaller screen displays the gauges probed along with their gauge
readings. For example, if the student has only investigated the level gauge on the steam
drum since the start of the troubleshooting session and found it to be low, the clipboard will
show the boiler schematic, steam generation subsystem and feed water path as the affected
schematic, subsystem and fluid path respectively (Figure 5.21). In addition, the extended
portion of the clipboard displays the drum's level gauge investigated by the student (Figure
5.22). By displaying this information, the clipboard eliminates a student’'s need to use
paper and pencil to keep a record of the diagnostic information gathered during

troubleshooting.

The clipboard helps the student in more than one way. Apart from book-keeping, the
clipboard informs the student if any gauge reading has changed since it was last viewed. It
does so by displaying a blue colored marker next to the gauge reading (Figure 5.23). Once
the student re-investigates the gauge, the marker disappears and the clipboard is updated to
contain the latest information. When a gauge reading is not yet stable, the blue marker
next to the gauge appears and disappears on its own. This is an indication for the student

that the gauge reading is perhaps oscillating.

Furthermore, the clipboard also informs the student about the most likely mode of current
failure, if and when it can be inferred from the tests conducted. For instance, while
investigating the cause for low feed water level in the drum, if the student in addition to
observing the low feed water level in the drum investigates the deaerating feed tank and
finds the feed water level to be high, "blocked-shut” is posted as the most likely mode of
failure (Figure 5.24). This mode of failure is inferred from the two gauge readings
observed by the student: a high feed water level in the deaerating-feed-tank and a low feed

water level in the steam drum.

157

Help-Levels Dialog

I

(Failure-mod@
|

l

Clipboard

CD buttons in passive
tutor help dialogs

:] highlighted items
in passive tutor
help dialogs

Select mode of failure
]

Expected abnormal
behavior associated with
selected mode of failure

levels of passive
tutor help dialogs

Figure 5.20 Summary of Interactions with Passive Tutor Dialogs to Access

Failure Knowledge

158

® o o) ® ® o) o
paeoqdr) 83 jo uontod pepudixy gg'q oIndiyg
£IqO) <--- WDIPp g -
sadnen-pajdajy
preoqdi) 1g°G 81n3ng
(ransdeane) [wasds |

IavaApIeg

_ smed-pmy-paidagyy

wasisqus-uonviauald-weas MBVWIYIS-1IN0Q

smaysfsqus-pay3aJJv SINeWIYIS- pay2J Iy

apouwr-am[re

(eovom s)
KYOITU) WS 3 E

=== sauobaju) djoy =0

159

Affected-Gauges

- drum —> tabes
| - desuperheater —> desuper-steam

Figure 5.23 Clipboard Indicating Change in Gauge Reading

160

aanyie jo 8Oy 1NYS-payoo[g Sunedrpuy preoqdi) $g'G eansig

WALLEQUE-UONRIIUII-UTR A S MPWIYIS-13T0q
INVA-DI) wassqns-upsaqad-Inva-paag INFWIYIS-INVA-PIIJ mygs paxaord oq o sreaddy

sqied-pmyy-par3ay v suasdsqus-paiIagsv SINVWIaGIS-PAYIaFI ¥ epow-amirme.{

cqped -proyg

(vemasdequs]

=3

_ nuagedwol _

sajobaje) diay

161

A student can get back to the troubleshooting mode by clicking on the resume icon in the
requests menu. A switch back to the troubleshooting mode is indicated by the changes in the
background colors of resume and stop icons. These icons revert to their original colors and
the cursor changes back to the shape of an arrow. However, all the passive tutor help dialogs
last displayed remain visible on the screens. Thus, even in the troubleshooting mode, the
student can have the clipboard visible on the screen and observe the changes that take place

on it as a consequence of further diagnostic actions.

If the passive tutor is to be invoked again after it has been invoked at least once during a
session, the student may do so by clicking on any selectable item in any of the displayed
passive tutor help dialogs. This action has the same effect on the cursor shape and the

background colors of stop and resume icons as when the tutor is invoked via the stop icon.

162

Active Mode

In the active mode, Vyasa often intervenes to communicate with the student. It does this
through instructions presented on the tutor dialog, accompanied by a beep. These

instructions are delivered following the evaluation of a student's misconception.

For instance if the student investigates schematics, subsystems or fluid paths unaffected by
the failure, the tutor delivers the appropriate instructions to guide the student away fromn
unaffected portions of the power plant (Figures 5.25). Such instructions are usually
displayed for a fixed, but short, period of time unless the instructions lose their context due

to system dynamics.

In addition to guiding the students with instructions, the tutor in the active mode is capable
of helping the students with their hypotheses. Student's hypotheses concerning failures are
either solicited by the tutor or voluntarily disclosed by the student. In either case, the
manner of communicating the failure hypotheses to the tutor is identical. First, the tutor
asks the student to select the suspected component responsible for the current abnormal
system behavior (Figure 5.26). Once the selection is made, the student is prompted to
identify the failure mode. This identification is made by picking the appropriate icon in
the displayed dialog box (See Figure 5.27, condensate pump is the selected component in

this example).

When adding hypothesis, either on request from the tutor or otherwise, the action of
selecting the suspected component is identical to the investigative action in the
troubleshooting mode. Also, the student can add multiple hypotheses at the same time. To
add multiple hypotheses, the sequence used to add the first hypothesis is repeated. In fact,
the student remains in the mode of adding hypotheses until the "Done" button in the tutor
dialog is pressed. After clicking on the "Done"” button the student returns to the
troubleshooting mode. It is, however, considered an error to click on the "Done" button

without providing a single hypothesis when the tutor requests for it.

Vyasa provides help with the hypothesis in two ways: with and without intervention. When
the tutor notices that the student is pursuing a hypothesis that should have been rejected
baszd on evidence already gathered, the tutor intervenes to provide evidence against the
hypothesis. For example, if the student suspects the condensate pump to be blocked shut in

spite of having observed a normal reading on the pressure gauge attached to the cpd valve,

163

Tutor: You seem to be investigating a schematic unaffected by
the current failure

Tutor: You seem to be investigating a subsystem unaffected by
the current failure

Tutor: You seem to be investigating a fluid path unaffected by
the current failure

Tutor: You seem to be investigating a subsystem and a fluid
path unaffected by the current failure

Figure 5.25 Examples of Instructions from Vyasa

164

Tutor: Provide your hypotheses. Select the component you suspect is
responsible for the current abnormal behavior. You may select
more than one component.

When finished, click on the "Done" button.

Figure 5.26 Tutor Soliciting Hypotheses from the Student

T | f-pume

condcnser : ﬁ :

o f-s-heater {-tank
Yo, -s-regulator T
R | - 1

Select the mode of failure for condensate-pump '

pd-vy
===
g_} .l Cancel
Blocked shut OK

Figure 5.27 Student Communicating the Suspected Mode of Failure

165

the tutor attempts to rectify the student's misconception by providing instructions in the

manner shown in Figure 5.28.

Vyasa also provides help with the failure hypothesis without intervention. This help is
provided on request. All communications with Vyasa concerning failure hypotheses,
including a request for help, are carried out via the hypothesis menu (Figure 5.29).

Interaction with the hypothesis menu is described next.

Hypothesis Menu

Hypothesis menu appears below the requests menu on the large monitor. It has four buttons.
The "View" button is used to view the list of hypotheses provided by the student to the tutor.
The "Add" button is used when the student wants to specify a new hypothesis. The "Delete”
button is used to remove a hypothesis from a list of hypotheses. Hence the delete button gets
highlighted only after the student has provided a set of hypotheses. Finally, the "Advice"

button is used to seek help concerning a particular hypothesis.

To view, delete, or seek advice on a failure hypothesis, the student must use the "View",
"Delete" and "Advice" buttons respectively. The tutor displays the hypotheses provided by
the student in a dialog box on the small screen for review (Figure 5.30). The interaction
with the tutor to delete a hypothesis or to seek advice is also straightforward. The tutor
prompts the student for every action through the tutor dialog. When deleting a hypothesis,
the student first selects the hypothesis in the dialog box shown in Figure 5.31 and then
clicks on the highlighted "Delete” button in the same dialog box. When seeking advice on
a hypothesis, the student first selects the hypothesis in the dialog box shown in Figure 5.32
and then clicks on the highlighted "Help” button. Any advice from the tutor is displayed in
a separate dialog box over the "Help" button (Figure 5.33).

166

Tutor: Gauge reading normal for the pressure gauge on the
output of cpd-valve is evidence that the

condensate pump has not failed in the Blocked-Shut mode

Figure 5.28 Example of Hypothesis Aiding with Intervention

Hypothesis

Jelete

Figure 5.29 Hypothesis Menu

167

dopey(q sesayjodLy mo1ady (g'g sandig

o 1\

Yua) - paaj-Sunuiseap I
Mmo-yea] uado-yom§
1AS01D
O
100D 3aT-1ARVA -PIIJ
m dumnd-aesuapuod

sasagyod4y juaiind Jnox

ul-yea Inys-pazaolg Hm

b

| GO

s}sanbay

zz
%

g

168

Jofel(q s1sayjodAY 99[d(1€°G 2IN31g

AUR-padJ-3uneiavap

mo-yeaT faajaq) uado-3omg ..lﬁ”h

T

103070 321-1R0A -PII]
I durnd-aesuapues

ur-yea] Wngs-payIolg

Majag o sisaqyod4y aygy 129135

@

sysanbay

169

Jofer(stsayjodAH dWUPY g¢'G I3t

s1saqiod£yq pasagas aqy 10) papraoid aq LA Iqissod djay Ly

1OIRL

AN

djaj] 10} sisapoddy e yaajag

= no-yea’y @ uado-yomg —
)] L o
duwnd-sjusuapuod
@ £ 10)8[D 331-1010A. - P23}
ui-yea’| nys-paxaory

e

170

uorjuoAIu] Moy Suipry sisayjodAy jo ejdwexy gg'g 2In3Ly

Iy

dumd-ajesuapuoa

an[eA [RTIIOU © SAOYS

aamea-pda yo ndino agy uo aSned amssaxd
aygy asnedaq ‘apow yngs pay3olg sy} ul
parrej jou Liqeqoid sey dumd-ayesuapuod

ngs payaoig

ﬁ o

YT PpURIvTH

djay 10j sisayyodLy e ya3[ag

111

In addition to the interaction described thus far in this chapter, the student interacts with
the instructional system at the end of every problem solving session to view the solution to
the problem last presented. The solution and the interaction with the instructional system
depends upon whether the student was using only the simulator or was also aided by the
tutor. In either case, the student is presented with a dialog box shown in Figure 5.34 at the
end of each problem. While students using just the simulator see only the solution as
shown in Figure 5.35, the students aided by the tutor have the option to view the explanation
for each observed abnormal behavior (Figure 5.36). If the student decides to click on the
"Explain” button in the dialog box shown in Figure 5.36, explanations are provided for all
observed abnormal system behavior. These explanations containing causal reasons for
each abnormal gauge reading are presented, one at a time, and in the order in which the
gauges are affected by the failure. In presenting the reasons for each abnormal gauge
reading, first the schematic which contains the affected gauge is displayed, then the
affected gauge along with its gauge reading are made visible and finally an explanation
for the abnormal reading is displayed in a dialog box on the small screen (Figure 5.37).
Once the student has read the explanation and clicked on the "OK" button, the tutor
proceeds to provide a similar explanation for the next affected gauge. This process
continues until the tutor completes providing an explanation for each abnormal gauge

reading caused by the failure.
This completes a description of the student-tutor interface of Turbinia-Vyasa and the valid

forms of operator interactions at this interface. In the next chapter, an experimental study

to evaluate the ITS architecture implemented in Turbinia-Vyasa is described.

172

Bt
¥5)
s,
' .
4
o’
~

s
Ry 7.,
T
I .‘.
.
=

€1 e

I0JE[NUIIS U0 Paurel], SJuspnig 10j uoyn[og Gg'g axndLy

B

s}sanbay

3

(snvwmagas-nio-jang
TORWIYIS-IARA -P33]
IRVWIY2$-13TT0q
IMPWIYIs-wWrNs)

SINPWINIS paydaIy

(pruyy-pros-1asws puos-oTem

PIU[}-10Y-135U3 pu 0 3-TTRW (maclsqus-vonrisus3-ramod a0] sdarp [343] Jan10q ‘drys @ du Surpasds uIgm
e s e s-pAvITIadnsap WRLEQUS-WOR RGO ’ ’ ’
uras-paragzadns 1o-1an) WNELEQDS-UONRIITIS-WERE
IR-UCDENQWMOD £3-30]J INUA -P33]) waclsqus-3unvagard-1anva-paaj)

fqied pmid paaygv suaisdsqng pataesiv

PISOTI AN £] IMIMIA INVA-PIVY

wmondwis

asned

uonn[og jsanbay 0} dorel(q Hg'g IndLg

wajqoid
ISU[970) WONL[0S 3|} 395 A0U £vWl DO L

173

Iojn], oY) Aq Papry sjuepnjg 10j UOHN[OS gg'g aandiy

{3Mwmagrs-no-janjy
INIWIYIS-INRA-PII]
IMEWIYIE-IAI0Q
JQRWIYIS-WRRS)

sIneWayds pAazy

{pmyy-p102-135CIPUCI-TTRW
PIU[J-10¢-125€3 puod-uren

wea s ureR s-pasayradusap
wexns-pavagiadus [1o-tany
Ime-uonsnqmad sed-ay INVA-PII))

sqed pmid pAddV

)

101AUGQ [VWIIOUQY PIALIIEQO

1re 10} wonvuefdxa a7} 208 Aou Lvwl BOZ

Tra 1 < ok

Aﬂsﬁann-ﬂgﬂgou-ngca ao] sdaip jaa% 19010q “drys sq du 2aipaads wagm
masisqns-uon SRqQWod
wassqns-uoneIduad-weRs
ﬁanhnann.uqvaunn:—-usg-—-uob
PISOT YIWE 6] 1AEDIA INRA -PIS]

smaisdsqng paIIBJIv

wodwmis

ssnew)

174

Jolaeyag waIsAg [euriouqy 10j suonygue[dxy 2e°'G aangy

amor

)

SINIBA JEWIOU IY) Ia0Q8 SIS RuM-pII}-Bunesacap

Y} U1 [343] J3BA WEIsdn IY) AL Mo 23184 PIdJ Y) UE ISCILNN

us jwad jJou S0P JOICINBIL-19)8M-PIDJ IY) ISNTIIY “IA[CA INYS PRIl

® Jo Jjduwrexs ue sk papicdos 3q Lew asnpre) B YIng "IyLa aoy LA Pady

3Y) IFWILOUL 0] AQEUN ST WSIUCYIIW (04IB0D 2IJCA PII) ay) 'yon)s st so)endal
JOJBA DII) Y UIYA 23|10 Y)Y JO INO PUB OJUE MO} JO IIUT|TQ SSTU

B UjEuIBUE 0} JAJea PII) JO IjCs 401} Y snfpe 0) sBy WSIUEYIAW [05)u0d
43184 P J2|10Q IY) ‘PISTIIOUL 51 JIPOG IYJ WUIJ WEAS Jo HEL MOl SsCI
) uIYa ‘OS|Y "JAI0Q Y} 0) [IN) pur A% BONSAQWIOD Jo Snjuend ay) ascasdur
0} §) WSIUCYIIW (0JJU0D VONISHAWILD Y} Jo quf Ay g ‘uoleaado vjul WsLERIIU
JO4JUOD UONSNQWIOD JINOQ Ay} S5 SIY], ‘SISCILNIP wnIP Y} U Jinssdid
WES IY) ‘RFADUY S0 IY) WO PUSMIIP WEAS Y)Y UIYAL 'SAGIN)) 0}
wWedis Jo ARSI Moy sswmu ay) Jupswaow) Lq passassuy 8 diys i o pIads Iyl

sisanbay

INoWIYIS-43)

{pPrap-poa-13cuapros-arem

(Inwwaqas-[ro-{am} PROL)-10Y-2ISIPUOI-UTRR
JNIWIYIS-IRBA-PIIJ WARE WeRS-PARIIdnsIP
INWWIYIC-13(10Q weRs-pasaqradacs fo-jamg

qeE A IE-WRNS) Ie-NCRLRQWOD SR3-J0[] INUA -Pss])

sInewagIs PARYV sqivg PRI PRy

(uascqus-voneiaal-raaod
WReLLQUE-TOn RQmDI
MASLSYUE-WONRI AT -grems
wasisqus-Iupesqatd-rnaa -poeey)

sunsisqus pnseyyy

175

CHAPTER VI

EXPERIMENTAL EVALUATION OF TURBINIA-VYASA

The final phase of this research involved an experimental evaluation of the architecture of
Turbinia-Vyasa. Prior to beginning formal experiments to test the effectiveness of
Turbinia-Vyasa, the tutor was evaluated with the help of a naval officer who is also an
ROTC instructor experienced with steam power plants. This evaluation was informal and
somewhat subjective. It was intended to evaluate the aiding material and instructional
strategies. A formal experiment designed to measure the diagnostic performance of
operators trained with and without the aid of Turbinia-Vyasa followed. The discussion in

this chapter deal with the details of the evalaation.

Informal Evaluation
Checking for consistency and correctness

The primary goal of the subjective evaluation was to ensure that the instrvctional material
presented to the student was technically correct, properly stated, and consistent with the
current training program for engineers in the US Navy. A secondary goal was to gather

suggestions for improving the interface to Turbinia and Vyasa.

During the subjective evaluation, the experimenter solved problems on Turbinia-Vyasa
while a subject matter expert, a Naval ROTC instructor, observed the interactive
performance feedback from the tutor. The instructor was requested to report any
inconsistencies that he observed. He was also asked to make suggestions and comments
concernin,g the design of display and operator interaction. Notes were made of the changes
suggested. These notes were later discussed in detail. Following the discussion, several of

the suggested changes were incorporated. However, the most useful outcome of this

176

analysis was the reaffirmation of the experimenter's confidence about the technical
validity of the material presented to the student.

At the conclusion of this evaluation, both the subject matter expert and the experimenter
were confident that the students would be receptive to Turbinia-Vyasa's tutoring strategy
and that the instructional system would be a worthwhile contribution to the Naval ROTC

training program. Pilot experiments began after this preliminary evaluation.

Pilot Study

A pilot experiment preceded the formal experiment. The purpose of the pilot experiment was
to validate the instructional material and to determine software errors that may have gone
undetected. The pilot study offered the experimenter an opportunity to evaluate the software

under experimental conditions.

Four graduate students from Georgia Institute of Technology participated in the pilot study.
All four had engineering backgrounds with several courses in thermodynamics and were
well exposed to research issues in human-machine systems. However, since the pilot
subjects were not drawn from the population of subjects that were to participate in the formal
experiment, the experimenter could not get a good idea about the trend of the formal

experimental results.

The pilot study was conducted with Turbinia-Vyasa operating in the active mode. Since the
simulator and the passive tutor are also functional in this mode they were not subjected to a
separate pilot study. Each of the four pilot subjects participated in four sessions. In the
introductory session, the subjects read the instructional manual to become familiar with
the Turbinia-Vyasa interface. Then, using the instructions, the subjects solved a single
problem designed specifically for the first session. In the subsequent sessions, each subject

saw four problems in every session.

The pilot study identified several discrepancies in the instructional manual and software
errors. These were corrected promptly prior to the start of the formal experiments.
Furthermore, five problems out of the twenty-nine obtained from the Marine Safety
International were eliminated from the set to be used in the formal experiment because

they were either redundant or exhibited inconsistent behavior.

17

Apart from detecting errors in the instructional manual and the software, the pilot study
was also useful in estimating time taken to solve problems. This helped the experimenter
design the appropriate duration of the introductory as well as subsequent training and data

collection sessions.

Finally, at the conclusion of the pilot study, the experimenter was better experienced to
answer questions from subjects participating in the formal experiment. This was
considered important as answers to similar questions by subjects in the three experimental

conditions had to be consistent and required advance preparation.

Formal Experiment

In the formal experiment, performance of subjects trained with and without the tutor was
compared. There were two goals in the experiment: (1) determining the effectiveness of the
tutoring architecture and methods for knowledge representation and (2) establishing the
usefulness of computer-based training programs over traditional means of training
operators to troubleshoot complex dynamic systems. In addition, the experiment provided
an opportunity to compare the effect of passive and active tutoring strategies. Thus, the
formal experiment sought answers to three queries. First, it addressed the question of
feasibility of building an effective computer-based tutor by implementing the proposed
architecture. Next, it addressed the question of whether the training by computer-based
tutor was better than the training provided by the simulator alone. Finally, it explored

whether the level of aiding during the course of training affected performance.

The experiment consisted of two phases: training and data collection. In the training
phase, subjects were exposed to one of the three instructional methods: (a) training on
simulator alone; (b) training with the aid of a passive tutor; and (c) training with the aid of
an active tutor. During data collection, trained subjects from all three conditions attempted
to solve the same set of problems unaided by the tutor. A complete description of the

experimental design follows.

Experimental Design

There were two main factors of interest in the experiment: training condition and seen

status of the problem. There were three training conditions: unaided simulator, aiding

178

o

with passive tutor, and aiding with active tutor. The first was a baseline condition where
training was provided using just Turbinia. The second and the third training conditions

used the computer-based tutor Vyasa.

The second factor of interest was the seen status of the problem. We anticipated that this
factor would influence performance and therefore should be investigated. Seen status had
three levels: seen once, seen twice and unseen. Seen once status applied to problems that
were seen once before by the student during training. Similarly, seen twice status applied
to problems that were seen twice during training. Unseen status referred to problems that
were not seen by the student until the test phase. Since the instructional system was
expected to train for not just familiar situations, the effect of seen status was important to

analyze the transfer of training from familiar to unfamiliar situations.

Subject and problem were two other factors that could account for variations in the
experimental data. While subject was nested within training condition, problem was
nested within seen status. Subject and problem along with the two main factors of interest
and their interactions make a complete list of sources of variation considered in this

experiment.

Training condition and seen status were fixed factors and subject (nested within training
condition) and problem (nested within seen status) were random factors. Therefore, a

mixed model was used to analyze data from the experiment.

Equipment

For the experiment, Turbinia, the marine power plant simulator, and Vyasa, the computer-
based tutor were installed on a dual screen Apple Macintosh II workstation with a Daystar

Digital 40MHz accelerator board. This machine was used for all data collection sessions.

Experiment

Thirty cadets from the Georgia Institute of Technology Naval ROTC unit participated as
subjects in the experiment. All except one subject were male. Subjects were required to have
a basic understanding of the theory of marine power plants. Therefore, sophomores and
juniors who had taken the freshman-level course in Naval Engineering offered by Navy

ROTC were considered. Among those selected were twenty-four sophomores and six

179

juniors. Although some of the selected subjects had additional exposure to thermodynamics
through course-work or had experience operating the marine power plants, the effects of
these factors were not analyzed in the experiment. Therefore, the assignment of subjects to

the three experimental groups was done randomly.

For every session completed in both the training and the testing phase each subject was
were paid $6 per session. In addition, an award of $25 was promised for the best
troubleshooter in each of the three groups based on performance in the two data collection

sessions.

All subjects were told about the performance measures that were of interest to the
experimenter prior to the experiment. They were also informed that for the purpose of
determining the award, the number of problems correctly diagnosed in minimum time

was the only measure to be considered.

Experimental Materials

There were separate written instructional manuals for each of the three experimental
conditions (Appendix A). The manual for subjects using just the simulator (Turbinia)
provided an introduction to the marine power plant, its automatic boiler control system, a
description of the common modes of failure and a guide to make the subjects familiar with
Turbinia's interface. For subjects using Turbinia-Vyasa in the passive mode additional
instructions were included that described the features and the interface of the passive tutor.
Further instructions describing the capabilities of the tutor were added to the manual for

subjects using Turbinia-Vyasa in the active mode.

Other material used in the experiment included a subject consent form and a survey form.
The subject consent form (Appendix B) and the survey form (Appendix C) were filled by the
subjects before the experiment. The consent form is required of all human subjects
voluntarily participating in experiments at Georgia Institute of Technology. The survey
form was designed by the experimenter to obtain a feel for the subjects’ academic

background, ship board experience and computer skills.
Three questionnaires (Appendix D) were also filled by the subjects at three key points in the
experiment. The first questionnaire was used to evaluate the subjects’ operating

knowledge of the marine power plant, its components and their behavior under normal

180

and failed states prior to the start of training. The second questionnaire was identical to
the first one and was filled by the subjects at the end of the training sessions. Answers to the
two questionnaires provided the experimenter with some idea about the knowledge
acquired during training. The third questionnaire was filled at the end of the last data
collection session. The purpose of this exit questionnaire was to elicit subjective opinions

about various aspects of the three training methods.

The subjects were also provided with pencils and a blank paper in every session to take
notes, if any, pertaining to the problems and to comment on the tutor and its strategies. The
purpose once again was to elicit subjective opinions about the tutor from subjects

participating in the experiment.

Experimental Procedure

The experiment was conducted in two phases: a training phase and a data collection test
phase. In the training phase, three instructional methods were employed to train three
groups of subjects to troubleshoot a simulated marine power plant. The effect of training
was then evaluated in the data collection phase where all subjects were exposed to identical

problems on Turbinia without the aid of the tutor.

Prior to the start of the experiment, the subjects were randomly assigned to three groups of
ten each. Group I was trained using just Turbinia, the simulator. Subjects in Groups II and
I1I were aided by a computer-based tutor Vyasa. While Vyasa functioned in the passive

mode for Group II it functioned in the active mode for Group III.

Subjects in each of the three groups filled a consent form, completed a survey form and
answered questions in Questionnaire 1 (Appendix D) prior to the start of the experiment.
The subjects were then handed the appropriate written instructional manual for each
group. They were advised to read the instructional manual before starting the first

session.

Training Phase

Training of subjects in each of the three groups lasted ten sessions. Each session had a
maximum duration of forty-five minutes. The sessions were run on consecutive days with

typically one session per day. Occasionally, when a subject missed a day, the lost session

181

was made up by extending the training period by a day. Under no circumstances was a

subject permitted multiple sessions in a day.

The first training session for each group introduced the system using a single problem.
Audio taped instructions, different for each group, were used during this session. These
instructions introduced the subjects to the interface and valid forms of interactions. All
interactions between the subject and the interface for this first session were controlled
through these instructions. The capabilities of the passive and active tutor were also
demonstrated through a predetermined set of actions performed by the subject upon request.
The experimenter was present for the entire duration of the first session to answer any
questions. Variability of information shared by the experimenter with the subjects was
controlled as far as possible so that consistency could be maintained between subjects and

across training groups.

After the first session, subsequent training sessions had three problems each. A subject had
thirteen minutes to solve each problem. If the subject solved the problem in less than the
allotted time, the next problem was immediately presented. Thus, if the subject solved one
or more of the three problems in a session within the allotted time for each problem, the

session could potentially be completed in less than forty-five minutes.

At the end of each problem the subject was provided the solution. While solutions presented
to subjects with the tutor were accompanied by an explanation, no such explanation was

provided to subjects using the simulator alone.

For the first three training sessions in each group, the experimenter was present in the
room to answer any questions. From session four onwards, presence of the experimenter
in the room was not considered necessary although he was still available to answer
questions, Rarely did the subjects seek any clarification from the experimenter past the

third session.

At the end of each training session past their third, the subjects were asked to make
subjective comments about the instructional system. Although the subjects were free to
write anything, they were encouraged to identify their "likes” and "dislikes” for the
system. At the end of their last training session, the subjects were asked to answer

Questionnaire 2.

182

At the end of training sessions, the subjects were ieady to participate in the data collection

phase of the experiment. This phase of the experiment is described next.

Data Collection Phase

The data collection phase consisted of two sessions. These sessions were run on
consecutive days immediately following the completion of training. During the data
collection sessions, the subjects interacted with the simulator only, unaided by any tutor,
irrespective of their training condition. Thus, even the subjects in Groups II and III who

were earlier aided by the tutor were unaided during the data collection sessions.

Each data collection session was approximately fifty minutes long and consisted of five
problems. If the subject solved the problem within the ten minute time period allocated for
each problem, the next problem was immediately presented. However, unlike the training
sessions, no solution was provided to the student at the end of the problem. At the end of the

data collection sessions, all subjects completed the exit questionnaire.

Training and Test Problems

Twenty-four problems were identified for use in th¢ cxperiment. Since the effect of
training methods on performance was to be studied for familiar as well as novel
situations, five out of the twenty-four problems were exclusively reserved for the data

collection phase.

For the training phase comprised of one single-problem session and nine three-problem
sessions, a total of 28 problems were required. With five of the 24 problems reserved for test
sessions, there were only 19 available for use in training. Therefore, nine problems were
shown twice to the subjects during training. Selection of these nine problems was done
randomly. However, the same problem was never presented the second time within a span

of three consecutive sessions.
In the test sessions, in addition to the five unseen problems, the subjects were given five

problems from among those seen during training. Three of these problems appeared twice

during training and two were seen only once.

183

The order in which problems were presented during training and test was identical for all
groups. In the test sessions, seen and unseen problems were alternated beginning with an
unseen problem. The actual order in which the problems appeared was however

determined randomly.

Performance Measures: The Dependent Variables

Although the ultimate goal in troubleshooting is to successfully identify the failed
component, there were several other performance measures considered in the experiment.
The measures used to access the performance of the subjects can be grouped into two
categories: product measures and process measures (Henneman and Rouse 1984). Product
measures are those measures that access the performance based on the final outcome of the
task. Process measures, on the other hand, access performance based upon the process by
which the final results were obtained. This section describes the product and process

measures used to evaluate the troubleshooter’'s performance.

Product Measures

Number of problems solved

Successful fault diagnosis is an important measure of troubleshooting ability. Since there
is a time limit imposed on solving the problems, a problem is considered solved if a correct

diagnosis is made within the ten minutes allocated for each problem in the test sessions.

Troubleshooting time

For those subjects who were successful in solving the problems, the total amount of time
taken for solution is a valuable measure of their performance rating. Those who take less

time are considered better troubleshooters.

Solving a problem correctly is, however, not sufficient. In the real world there are costs
associated not only with the troubleshooter's inability to solve problems but also with the
way the diagnosis was made. Therefore, efficiency of the diagnostic process must also be

considered. The process measures discussed next focus on efficiency of troubleshorting.

184

Process Measures

Number of informative actions

A student may take many actions at Turbinia’'s interface. However, not all actions are
informative. Only those actions that are taken to obtain gauge readings are informative
since they alone can help the students access the system state information needed to solve
the problems. Therefore, the total number of such informative actions provides a measure
of the student's overall troubleshooting ability. The smaller the number of informative

actions taken to solve a problem, the better is the diagnostic performance.

Percentage of relevant informative actions

Even though every informative action has some information content, only some are
directly relevant to the failure being investigated. The smaller the number of these
relevant informative actions taken to solve the problem, the better is the diagnostic
performance. Since the total number of relevant informative actions necessary to solve a
problem is dependent on the problem, the percentage of informative actions that are

relevant for a failure is a better measure.

Percentage of guesses

At any time during the troubleshooting process there are likely candidates for the failed
component, based on the observed abnormal system states. The likelihood that a component
may have failed increases or decreases as more diagnostic tests are conducted. While
quick diagnosis of a problem saves time and money, incorrect diagnosis costs additional
time and money. Even so, selecting a likely component as the cause of abnormal system
behavior is not as bad as picking a component that cannot have failed. Thus, an incorrect
diagnosis that implicates a component that could not have failed, based on observed
symptoms, is a consequence of pure guesswork or inaccurate troubleshooting knowledge.
Such an incorrect diagnosis is considered a guess and fewer guesses indicate better
troubleshooting performance. Since the number of incorrect diagnoses, in terms of guesses
and probable hypotheses, may depend on the problem, percentage of incorrect diagnosis for

each problem that were guesses is a reasonable measure of troubleshooting performance.

185

Number of unaffected schematics/subsystems/fluid-paths investigated

For each failure, only a few schematics, subsystems, and fluid paths are affected. Affected
schematics are those schematics that have gauges with abnormal readings. Investigating
components in schematics that are unaffected by the failure reflects the student's inability
to relate symptoms to the structural location of the power plant. Thus, investigating
components in unaffected schematics is undesirable and the number of such schematics

wrongly investigated is a measure of performance.

Likewise, investigating unaffected subsystems and fluid paths reflects the student's
inability to relate symptoms to the functional location of the power plant. The number of
subsystems and fluid paths wrongly investigated in this manner are also measures of
performance. The fewer the number of unaffected subsystems or fluid paths investigated

by the student in solving a problem, the better is considered the performance.

Nature of diagnosis

In order to isolate a failed component it is necessary to conduct diagnostic tests that
eliminate other probable hypotheses. Due to the limited availability of gauges in the
system, the troubleshooter may not be able to isolate the fault completely. However, for each
of the failures, there are some gauges that are affected and must be checked to justify
pursuing that hypothesis. If a student correctly solves a problem but has not gathered
sufficient evidence to do so, the diagnosis is considered premature. On the other hand, if it
is a seen problem, then it may not be necessary to gather all evidence before correctly
identifying it. However, while attempting to solve a seen problem a student may make
several incorrect diagnoses. If these diagnoses suggest hypothescs that are not probable,
then the final diagnosis is still considered premature. The rationale for calling such a
diagnosis premature is that if a student incorrectly diagnoses a seen problem, then further

investigations for that failure should proceed along the lines of an unseen problem.

There may also be times when the student is unable to diagnose the fault even after
sufficient evidence implicating the failed component has been gathered. This indicates the
student’s inability to integrate the diagnostic information and make effective use of it. In

such cases when the student solves the problem, the diagnosis is termed as overdue.

186

Finally, when the student integrates diagnostic information properly, the diagnosis is
neither premature or overdue, and hence is considered timely. Categorizing correct
diagnoses as premature, timely or overdue provides a subjective measure of diagnostic

performance.

Table 6.1 summarizes the product and process measures used to access the performance of
subjects in each of the three experimental conditions. The next section describes the

anticipated differences ir the performance of subjects trained with and without the tutor.

Possible differences in performance

Product measures provide a good criteria to compare the performance of subjects trained
with and without the tutor, but they cannot be used to compare the strategies developed by
subjects in aided and unaided groups. Process measures, on the other hand, provide means
to compare the troubleshooting strategies of the subjects. This section discusses the
anticipated differences in the performance of subjects in terms of product and process

measures.

Differences in the performance of the subjects, in the three experimental groups, in terms
of number of problems solved and the average troubleshooting time can reflect the ability or
inability of the tutor to teach subjects to identify the fault in a timely manner. However,
since subjects in Turbinia-Vyasa are not penalized for wrong diagnosis and there are only
a finite number of failure possibilities, it was possible for all subjects to solve the problems
within the allocated time. Therefore, substantial differences were not expected in the
performance of subjects with respect to the number of problems solved. Also, no definite
conclusions concerning the tutor's ability to teach students to identify faults based on this

performance measure alone were evpected.

However, with respect to the troubleshooting strategies developed by the subjects, it was
expected that those trained on the simulator alone would perhaps develop an unguided
search strategy to locate the fault. Therefore, they would most likely make more guesses,
take a lower percentage informative actions that are relevant, make more premature
diagnoses and investigate more unaffected schematics, subsystems and fluid paths. Also,
since they would rarely be using abstract reasoning, they would perhaps solve the problem

in less time but with many attempts of incorrect diagnosis. In other words, it was expected

187

Table 6.1 Summary of performance measures

Performance Measures

Description

Product Measures

Number of problems solved

number of problems solved out of 10
presented to each subject

Average troubleshooting time

average time taken to solve a problem

Process Measures

Number of informative actions

average number of diagnostic tests
conducted per problem

Percentage of relevant informative actions

percentage of diagnostic tests conducted
that were relevant o the failure being
investigated

Percentage of guesses

percentage of incorrect diagnosis that are
guesses

Instances of investigations in unaffected
schematics/subsystems/fluid-paths

number of investigations per problem in
schematics, subsystems and fluid paths
unaffected by the failure

Nature of diagnosis

proportions of correct diagnoses that are
premature, timely and overdue

188

that those trained with the tutor would perform significantly better in terms of process

measures.

It was also possible that those trained on the simulator may learn to map symptoms to faults
better than those trained with the tutor because they have less activities to perform and can
concentrate more on symptom-cause associations. However. those trained on the simulator
were not likely to be able to understand the reasons for many of the abnormal system
behaviors. As such, their troubleshooting strategy based simply on associating symptoms
to faults, while useful for solving familiar problems was not likely to be of much help in
unfamiliar situations. On the other hand, since the subjects trained with the tutor will be
taught to reason about failures, their troubleshooting strategy will consist of formulating
hypotheses and conducting tests to verify or reject each hy pothesis. Such a troubleshooting
strategy should prepare those trained with the tutor to cope with unfamiliar situations better
than those who only rely on symptom-cause associations. Therefore, it was expected that

the performance of those trained with the tutor will be better for unseen problems.

Furthermore, it was anticipated that comparing the performance of those trained with the
passive and active tutor might reveal some interesting individual differences in
performance. These differences may help understand preferences for learning styles and

may suggest something about the instructional strategy used in Turbinia-Vyasa.

This concludes a description of the experiment conducted to evaluate the architecture of
Turbinia-Vyasa, including the measures that were used to compare the performance of
subjects trained with and without the tutor. The next chapter discusses the analysis of the

data collected from the experiment and the results of the analysis.

189

CHAPTER VII

EXPERIMENTAL RESULTS

In this chapter, results from the analysis of the experimental data are described.
Performance of the subjects from each of the three training groups were compared. First,
the effects of the factors considered in the experiment are presented using ANOVA. Next,
the results of the analysis are discussed in detail. Finally, the chapter concludes with a
discussion of the effectiveness of the proposed architecture and its use in computer-based

tutors for diagnostic problem solving in complex dynamic domains.

Analysis of Data

The data were analyzed using the SAS General Linear Model (GLM) and Type III sum of
squares. The mixed model used to describe the data consisted of seven sources of variation
that included both fixed and random effects (Table 7.1). The estimated mean squares
expression computed by SAS for each source of variation is also shown in Table 7.1.

Individual ANOVA Tables for the performance measures appear at the end of this chapter.

Analysis of the fixed part of the mixed model involved estimating and testing hypothesis
about the fixed effects. Significant effects were detected using an o value of 0.05. Least
Significant Difference (LSD) and Duncan's multiple comparison tests (Milliken and

Johnson, 1984) were used to compare means for significant effects of the fixed factors.

Even though the number of problems were not equally distributed in the three levels of seen
status, the estimated mean square expressions in Table 7.1 show that the coefficients for the
same variance term in each expression were almost equal. This indicates that the

experimental design was fairly well-balanced in spite of unequal distribution of problems
in the three levels of seen status. Therefore, the analysis of the fixed factors, which usually

depends upon whether the design is balanced or not, was conducted using the method for the

190

Table 7.1 Expected Mean Squares Expression

Source of Type III Expected Mean Squares
Variation Expression
Cond Var (error)

(Fixed Factor)

+ 3.086937 Var (Subj*Seen(Cond))
+ 10 Var (Cond*Prob(Seen))

+ 9.19524309 Var(Subj(Cond))

+ Q (Cond, Cond*Seen)

Seen
(Fixed Factor)

Var (error)

+ 3.1 Var (Subj*Seen(Cond))
+ 10 Var (Cond*Prob(Seen))
+ 30 Var (Prob(Seen))

+ Q (Cond, Cond*Seen)

Cond*Seen
(Fixed Factor)

Var (error)

+ 3.1 Var (Subj*Seen(Cond))
+ 10 Var (Cond*Prob(Seen))
+ Q (Cond*Seen)

Subj(Cond)

(Random Factor)

Var (error)
+ 2.9032258 Var (Subj*Seen(Cond))
+ 8.709677 Var (Subj(Cond))

Prob(Seen)
(Random Factor)

Var (error)
+ 10 Var (Cond*Prob(Seen))
+ 30 Var (Prob(Seen))

Cond*Prob(Seen)
(Random Factor)

Var (error)
+ 10 Var (Cond*Prob(Seen))

Subj*Seen(Cond)
(Random Factor)

Var (error)
+ 3.1 Var (Subj*Seen(Cond))

191

balanced case (Milliken and Johnson, 1984). However, even though the experiment was
fairly well-balanced, some of the sum of squares generated were not independent. For
these sum of squares, test statistics were computed using Satterthwaite's approximation
technique (Milliken and Johnson, 1984). Sample computations of test statistics in the
analysis of the data are shown in Appendix E.

Analysis of the random part of the mixed model was done by computing the method-of-
moments (Milliken and Johnson, 1984) estimates of variance components. Statistical tests

were conducted to detect the significance of these variance components.

A discussion of the effects of factors considered in the experiment, beginning with the fixed

effects, is provided next. This will be followed by a detailed discussion of the results.

Fixed Effects

The experiment had two fixed factors: training condition and seen status of the problem.
The effects of these two factors along with their interaction effect on the performance of the

subjects are described next.

Effect of Training Condition

The subjects were exposed to one of the three training conditions: training on simulator
(Group I), training with Vyasa in passive mode (Group II), and training with Vyasa in

active mode (Group III). The effect of training condition on the performance of the subjects

is discussed below. A summary of training condition effect is presented in Table 7.2.

192

Table 7.2 Summary of Training Condition Effect

Training Condition

Performance
Performance Passive | Active Units Comparison
Measures Simulator Tutor Tutor a=0.05
(S) (P) (A)
Problems solved 93.00 95.00 88.00 % Not significant
Troubleshooting 2.62 3.43 3.69 Minutes Not significant*
time
Number of
informative 10.72 818 8.83 Actions Not significant*
actions /problem
Percentage of
relevant 59.70 72.50 71.50 % (S) < (P), (A)
informative
actions
Percentage of % of
guesses 71.40 35.23 29.50 incorrect (8) > (P), (A)
diagnoses
Instances of
investigations
in unaffected
Schematics 0.36 012 0.23 Not significant*
Instances /
Subsystem 0.81 0.40 0.35 problem (S) > (P), (A)
Fluid-paths 181 1.00 0.98 (8) > (P), (A)
Nature of
diagnosis
Premature 26.80 14.73 9.00 (S) > (P), (A)
% of solved
Timely 53.70 81.00 85.22 problems (S) < (P), (A)
Overdue 19.35 4.20 5.60 (S) > (P), (A)

193

* Significant at a = 0.1

Number of problems solved

Subjects in Group Il solved 95% of the problems while subjects in Groups I and III solved
93% and 88% of the problems respectively (Figure 7.1). Thus, subjects in Group 1I solved the
maximum number of problems followed by subjects in Group I and III. However, the effect
of training condition on the number of problems solved was not statistically significant
(ANOVA Table 7.4a).

The relatively poor performance of subjects in Group III can be attributed to three factors.
First, a single subject was responsible for five of the unsolved problems. Second, subjects
in Group III were more inclined to leave a problem unsolved because they were reluctant to
guess the failures. Third, the subjects in this group became somewhat dependent on the
tutor to solve the problems and when the tutor was withheld from them, during the test

sessions, their performance deteriorated.

Troubleshooting time

Subjects in Group I were the quickest to solve the problems with an average troubleshooting
time of 2.62 minutes per problem. Those in Group III were the slowest, taking 3.69 minutes.
Subjects in Group II were somewhere in between the other two groups with an average time

of 3.43 minutes per problem (Figure 7.2).

The troubleshooting time data were not at all surprising considering that the unaided
group did not have a guided strategy to solve the problems and relied heavily on guessing.
Guessing as opposed to abstract reasoning takes less time. However, at a level of 0.05, the
effect of training condition on troubleshooting time was not significant (ANOVA Table
7.4b).

194

Training Condition Effect

T AT e AT e T O T AT e A o T e T A A AT T e
B el Lt T
0."0”.*‘0"."0"‘0'0“‘0‘0'0"‘0."‘ "'0“"’0‘
R 2OOOOCHIOOOOOOOOOOOOOOOD

LK - ¥,
.

LANAN NI OOOOOO

SRNKAARBHXXAASNLR KX XICKXN]

X
X

e tyiet|
3
.
X

100 +

i

T

p=4 o
~N

60 4
40 -+

3
T

o

<«

paaros swarqodd 3o o

195

Figure 7.2 Average troubleshooting

Figure 7.1 Number of problems solved

time per problem

% Active Tutor

™
O
=
[o]
£
o
]
Ay

D 8im ulstor

Number of informative actions

Subjects in Group I conducted 10.72 diagnostic tests per problem as compared to 8.18 and
8.83 diagnostic tests per problem conducted by subjects in Groups II and III respectively
(Figure 7.3). The difference in the number of informative actions taken by the subjects in
aided and unaided groups was, however, statistically not significant (ANOVA Table 7.4c)
at a level of 0.05.

Even though the results were statistically not significant the data indicate that the subjects
in Group I, in comparison to the subjects in other two groups, needed more diagnostic tests to
solve the problems. In other words, subjects in Groups II and III utilized the diagnostic
information more effectively and required less number of diagnostic tests to solve the

problems.

Percentage of relevant informative actions

Even though subjects in the unaided group conducted more diagnostic tests than subjects in
the two aided groups, only 59.7% of their tests were relevant to the failures being
investigated. On the other hand, for subjects trained by the passive and active tutors, the
percentage of diagnostic tests relevant to the failure was much higher: 72.5% for subjects
trained by the passive tutor and 71.5% for subjects trained by the active tutor (Figure 7.4).
Of the three groups, the percentage of informative actions that were relevant to the failure

was significantly smaller for Group I (ANOVA Table 7.4d).
Since the percentage of relevant informative actions taken by the subjects in the two aided

groups was significantly higher, it indicates that those trained by the tutor were better able
to identify the diagnostic tests that were useful for solving a problem.

196

g Condition Effect

inin

Tra

PN AN IR HAKAHHK)

>

+
0’0.0'0.0"'0’0‘0’0"‘0’0’0’0‘0‘0‘0’0'0 0’0‘0’0"
Heaatelels

9,
OSSOSO COOHIHK RN NS
DO OOCHKAH AN IO 0
PRXOCHAXIOCHHNNNR LRI XN HNHN

ormative actions

Figure 7.4 Percentage of relevant

ottt

-+, L)
Sttt ettt dedatatetsiele

197

ormatve

Figure 7.3 Number of i
actons

Active Turor

@ Passive Tutor

Simulator

Percentage of guesses

Subjects in Group I not only performed a large number of incorrect diagnoses but also as
many as 70.5% of their incorrect diagnoses were guesses. In comparison, the percentage of
incorrect diagnoses that were guesses was much lower for subjects in Groups II and III;
35.23% for subjects in Group II and 29.5% for subjects in Group III (Figure 7.5). The effect of
training condition was significant with higher percentage of guesses for the unaided group
(ANOVA Table 7.4¢) in comparison to the twc aided groups.

In addition, evidence of guessing strategy was noticed in 60% of the problems for Group 1
and only 39% and 30% of the problems for Groups II and III respectively. Also, the data
indicate that the subjects in Group I often used guessing as a primary strategy whereas the

subjects in Groups II and III started guessing only when they were running out of time.

Number of unaffected schematics/subsystems/fluid-paths investigated

Subjects in Group I provided 0.36 instances of investigations in unaffected schematics per
problem as compared to 0.12 and 0.23 provided by subjects in Groups IT and III (Figure 7.6).
However, at a level of 0.05, the results were not significant (ANQOVA Table 7.4f).

Groupwise comparisons of the number of investigations in unaffected subsystems and
fluid paths are also shown in Figure 7.6. Analysis of this data shows that subjects in the two
aided groups performed significantly fewer investigations in unaffected subsystems and
fluid paths (ANOVA Tables 7.4g & 7.4h). In other words, subjects in the two aided groups
were able to better identify the location of the fault and investigate the relevant portions of

the power plant.

Nature of diagnosis

The usual SAS analysis of variance was not possible for this measure which consisted of
comparing the three mutually exclusive categories of correct diagnoses (premature, timely
and overdue) from each of the three training groups. Therefore, pairwise comparisons
were performed to detect significant differences in the proportion of premature, timely, and
overdue diagnoses across the three training conditions (Appendix F). The results of the
statistical tests performed indicate that the training condition had a significant effect on
the nature of the diagnosis provided by the subjects.

198

FE] R 4]
2
& K
= -
c o
(o] Q
= 2
= £
"g ©
8 g
n
20 ~
o
]
£ g
m .
s [N
=
———t+——t—t—t
I~ - =R= ===
@O N T MON
STsouBerp 19AUCITT JO Y

RSN
&%

O

ORI R R R R RRANN

llllll_llll
T T !
N ® v T N R T NOo
Lo L I o B o o o o 2

199

marqoad 4ad sasweisT]

Fluid-paths
Figure 7.6 Number of in stigations in unaffected schematics!subsystems!fluid-paths

Subsystems

Schematics

- Passive Twror @ Active Tutor

D Simvylaror

Of the problems solved, subjects in Group I performed more premature diagnoses as
compared to subjects in Groups II and III. In Group I, 26.8% of the diagnoses were
premature. In Groups II and III, the corresponding figures were 14.73% and 9%
respectively (Figure 7.7). Statistically, the proportion of premature diagnoses performed by
subjects in Group I was significantly more than those performed by subjects in Groups II
and III Since the subjects in Group I relied rather heavily on guessing, it is not surprising

that they got lucky more often.

Subjects in Group I solved only 53.7% of the problems in a timely manner. However, for the
two aided groups, the number of problems solved in a timely manner was significantly
higher: 81% for Group II and 85.22% for Group III (Figure 7.7). The results suggest that the
subjects in the two aided groups either formed a better understanding of cause-effect

associations or utilized it more effectively to diagnose faults.

Also, for subjects in Group I, more diagnoses were overdue as compared to the two aided
groups. The number of overdue diagnoses by subjects in Group I was 19.35% compared to
4.2% and 5.6% for subjects in Groups II and III respectively. (Figure 7.7). This shows that
the subjects in Group I were not as good at integrating diagnostic information as the

subjects in the two aided groups.

jomL Y g

JOM] ATSSEJ m

forTimg

STSOUBeTp JO AtMEN £ L am3t]

Apary

-+

19911

uonIpuo) surure.d],

or
02
o¢
op
0s
09
0
08
06

201

swaqosd paatos jo g

Effect of Seen Status

Of the ten problems presented to each subject in the data collection phase of the experiment,
five had been seen earlier by the subjects during training. Two of these five problems were
seen once and three were seen twice. Thus, seen status had three levels: unseen, seen once
and seen twice. The effect of seen status on the performance is discussed in detail next.

Summary of seen status effect is presented in Table 7.3.

Number of problems solved

Subjects were able to solve 95% of the seen problems and 88% of the unseen problems (Figure
7.8). A relatively poor performance of subjects with unseen problems was expected.
However, the effect of seen status on the number of problems solved was statistically not
significant (ANOVA Table 7.4a).

Troubleshooting time

Subjects were quickest to solve problems seen twice followed by problems seen once and
unseen problems. On an average, each problem seen twice was solved in 2.64 minutes as
compared to 2.89 minutes for a problem seen once and 3.78 minutes for an unseen problem
(Figure 7.9). However, the effect of seen status on the troubleshooting time was also
statistically not significant (ANOVA Table 7.4b).

Table 7.3 Summary of Seen Status Effect

Seen Status _
Performance
Performance Seen Seen Units Comparison
Measures Once Twice Unseen a=0.05
(S1) (S2) (S0) ’
Problems solved 95.00 95.50 88.60 % Not significant
Troubleshooting 2.89 2.64 3.78 Minutes Not significant
time
Number of
informative 8.45 816 1.2 Actions Not significant
actions /problem
Percentage of -
relevant 67.00 72.40 64.80 % Not significant
informative :
actions |
Percentage of % of
guesses 52.20 32.90 52.16 incorrect (82) < (S1), (S0)
diagnoses
Instances of
investigations
in unaffected
Schematics 0.30 0.08 0.38 (S2) < (S1), (S0)
Instances /
Subsystem 048 0.70 0.66 problem Not significant
Fluid-paths 0.93 112 148 Not significant
Nature of
diagnosis
Premature 3.50 2.30 32.30 (80) > (S1), (82)
% of solved
Timely 84.21 89.53 57.89 problems (80) < (81), (82)
Overdue 12.28 813 9.77 Not significant

waasu() D

LN], Taag E

e

¥
et

urerqoxd xad sum

AUnooysIqnOn IBRIIAY 62 a1

0 F
150
T1
-+ W.“
tz
Tse
Ts
Tse

SaMUIN

Yoo snyelg usag

paatos swarqoxd Jo xequmpy g2 am3rg

- 0

T 02
T0ob
T 09

T 08

== 001

PaATos smapqodd Jo o

Number of informative actions

On an average, subjects conducted 8.16 diagnostic tests while solving problems seen twice
followed by 8.45 diagnostic tests while solving problems seen once and 10.20 diagnostic
tests while solving unseen problems (Figure 7.10). The difference in the number of
informative actions taken by the subjects for the three levels of seen status was, however,
statistically not significant (ANOVA Table 7.4c¢).

Percentage of relevant informative actions

For problems seen twice, 72.4% of the diagnostic tests conducted by subjects were relevant.
The percentage of relevant diagnostic tests decreased to 67% for problems seen once and

dropped further to 64.8% for unseen problems (Figure 7.11). However, the difference in the
percentage of informative actions that were relevant to the failure, for all levels of the seen

status, was statistically not significant (ANOVA Table 7.4d).

Percentage of guesses

For problems seen twice, only 33% of the incorrect diagnoses were guesses as compared to
52% for each of the other two levels of seen status (Figure 7.12). Also, evidence of guessing
strategy was noticed in 29% of the problems seen twice, 33% of the problems seen once, and
57% of unseen problems. Statistically, the percentage of incorrect diagnoses that were
guesses was significantly influenced by the seen status of the problem with percentage of
guesses being the lowest for problems seen twice (ANOVA Table 7.4e).

Actions per problem

12 4
10 A
8 4
64
44
24

0

T

X
o
%

Seen Status Effect

% of informative actions

Figure 7.10 Number of informative

actions

R of incorrect diagmosis

o

o
i
1

S0 +
40 +
30 +

[
o
:
T

10 +

o
3

74 -
72 A
70 A
68 -
66 4-
64 +
62 +
60

$+

T

Figure 7.11 Percentage of relevant
informative actions

i

Figure 7.12 Percentage of guesses

@ Seen Once

Seen Twice

r—-‘ Tnseen

i

Number of unaffected schematics/subsystems/fluid-paths investigated

The effect of seen status on the number of unaffected schematics investigated was
significant. Instances of investigations in unaffected schematics were less for seen
problems. However, the effect of seen status on the number of unaffected subsystems and
fluid paths investigated was not significant (ANOVA Table 7.4f, 7.4g and 7.4h). A
comparison of the number of investigations in unaffected schematics, subsystems and

fluid paths made for seen and unseen problems is shown in Figure 7.13.

Nature of diagnosis

The analysis for detecting significant effect of seen status was done in a manner similar
to the one explained for the training effect in Appendix F. The results indicate that the seen
status of the problem had a significant effect on the nature of the diagnosis provided by the
subjects. Subjects performed significantly better with problems they had seen during
training. In other words, practice and familiarity with the problems influenced the nature

of diagnosis provided by the subjects.

Of the problems solved, less than 3% were premature diagnoses with seen problems as
compared to 32.3% premature diagnoses with unseen problems. Also, over 87% of the seen
problems were solved in a timely manner whereas just about 58% of the diagnoses were
timely for the unseen problems (Figure 7.14). However, the difference in the number of

overdue diagnoses for seen and unseen problems was statistically not significant.

Instances per problem

% of solved problems

1.6 -

0.8 +

0.6
0.4

|

0.2 +

0 i IR EEREHH ;

Seen Status Effect

1

1
%

A

e
-4

Sckematics Sudsystems Fluid-paths

Figure 7.13 Number of investigations in unaffected schematics/subsystemsifluid-paths

90
80
70
60

40
30
20
10

%

ettt st byt

OISR AEREE

e
e
el
e
WK
tetetelaleleledetedy
ptetetetalelaletitelst

%

X
l 5
.
T

Premature Timely Overdue

Figure 7.14 Nature of diagnosis

B . .
i) Seen Once m Seen Twice D Unseen

Interaction Effect: Training Condition by Seen Status

Training condition by seen status interaction effect can be seen for each performance
measure in Figures 7.15 - 7.25. The data indicate that for most performance measures, the
aided groups performed better than the unaided group. Also, there is evidence in the data
that suggests that training with the tutor was more helpful in unfamiliar situations.
However, the training condition by seen status interaction effect on the performance of
subjects was statistically not significant. Some interesting trends observed from the data

are discussed below.

First, it was observed that the subjects in Group III, unlike the subjects in the other two
groups, were slightly slower at solving problems seen twice than they were at solving
problems seen once. The inability of subjects aided by the active tutor to solve the more
familiar problems faster can be attributed to lack of practice time. It appears that since
these subjects had more activities to perform during the same period of time, they were
unable to benefit from practice as much as those in the other two groups. On the other hand,
Group I benefited the most from practice and hence solved the more familiar problems
fastest. A similar interaction effect was also observed in the number of diagnostic tests
conducted per problem by subjects in Group III. The number of diagnostic tests conducted

for problems seen twice was slightly higher than the number for problems seen once.

Second, subjects in Group I used guessing strategy in 76% of the unseen problems and in
44% of the seen problems. In comparison, subjects in Group II used the guessing strategy in
54% of the unseen and 24% of the seen problems while the subjects in Group III used it in 42%
of the unseen and 18% of the seen problems. Thus, the tendency to guess was sharply
reduced by the tutor for both the seen and unseen problems even though it was more
prominent with unseen problems in all three training groups. Moreover, the ability of the
subjects in the aided groups to solve problems without guessing is evidence that these

subjects were better prepared to cope with unfamiliar situations.

Third, subjects in Groups II and III performed fewer premature and overdue diagnosis and
more timely diagnosis with unseen problems as compared to subjects in Group I. This is
further evidence that training was transferred to unfamiliar situations better with the

groups aided by the tutor.

Training Condition by Seen Status Interaction Effect

0:0:0’0‘0’0’0“"’0’“"0’0’0’9’0

I

RTINS

Ky
LXK HARK AR KA

[T
eetetatetatatatetettetetetedy
RN
SIS IIIIINIIID,

XX
Se¥el
%9

60 4

a 4

20 4
0

3
T

(=3

©

100 T

paafos swarqoud jJo ¢

210

Unseen

wice

Seen T

Figure 7.16 Average troubleshooting time

Seen Once

Unseen

wice

Seen T

Seen Once

Figure 7.15 Number of problems solved

per problem

n Passive Twor . Active Twor

D 8im ulator

e
KRR o]

&S
e etetatetets
AN

T .
e
) ’0 '0.0 ‘0 ‘0‘0 ‘0 & '0 ’0 .‘ '0 ’0.0.0 .0 ’1

* 0.0’0.0"‘000‘0‘0‘Q‘CQQOO'Q.Q
Q0 o 20 20 20 X o0 3 M e i]

R RR XTI IICTNRY
GG AN NI I
P SIEOCOC20292505050505]
R IOIRIOIIIIN505¢]
RN 5505¢%
KSR AXHRRRHSNN]
SIS IIIIIIIIIII IS,

Training Condition by Seen Status Interaction Effect

PR R XN X
XA AN

AL e a e e e tatetatety!
POSREEESR A RXRA XK]
PXXRRXRXHXRRHXHK X

1 l 1 I

r T LI
N O oo v
—

waqoud sad stonry

44
24
0

Unseen

Seen Twice

Figure 7.18 Number of relevant i
actions

Seen Once

Unseen

wice

Seen T

Seen Once

Ormative

o TeTe e e T e
Sretereratetatatets

ormative

b & I —

L4 T T L

(=3 o (=] (=) o
© ['=4 v N

STSOuUBETP AUOIT JO 94

actions

Figure 7.17 Number of i

211

Unseen

wice

Seen T

8een Once

Figure 7.19 Percentage of guesses

- Passive Tutor - Active Tutor

D 8im ulstor

Training Condition by Seen Status Interaction Effect

06
05+
04+
0.3 4
0.2

0.1 4
0 L1 B,

8een Once Seen Twice Unseen

Figure 7.20 Number of instances of investigations
in unaffected schematics

¥

Instances per problem

17
0.8 4
064
044
0.2 4

-+

T

Instances per problem

Seen Once Neen Twice Unseen

Figure 7.21 Number of instances of investigations
in unaffected subsystems

o
(4]
-
T

Instances per problem
—

Seen Once Seen Twice Unseen

Figure 7.22 Number of instances of investigations
in unaffected fluid-psths

D Sim ulstor - Passive Twor . Active Twor

22

Training Condition by Seen Status Interaction Effect

50,
40 4
30
20 +
10

0 xr] 4

R of solved problems

Seen Once Seen Twice Unseen
Figure 7.23 Number of premature disgnosis

% of solved problems

Neen Once Seen Twice Unseen
Figure 7.24 Number of timely diagnosis

25
20 4
15
10 +

51

R of solved prodlems

Tedeied

Seen Once Seen Twice Unseen
Figure 7.25 Number of overdue diagnosis

D 8im ulator . Passive Twtor - Active Twtor

213

Fourth, subjects in Groups II and III did not have even a single instance of premature
diagnosis with seen problems. This suggested that the subjects aided by the tutor, at least for
familiar problems, gathered all the relevant diagnostic information before identifying the

failed component.

Random Effects

In the experiment, there were two main random effects: subject (nested within training
condition) and problem (nested within seen status). Along with these two effects, the effects
of following two factor interactions were also analyzed: (1) subject by seen status, and (2)
problem by training condition. While variance in the data due to interaction effects was
insignificant, variance in most of the performance measure data due to the two main

random effects was significant.

Effect of Subject

Subjects that participated in the experiment came from different educational backgrounds
with perhaps preferences for different styles of learning. Since their educational
backgrounds and preferences for learning styles were not the factors of main interest in
the experiment, the experiment was not designed to study the effect of individual
differences in the subjects. However, since these subjects (nested within training
conditions) were expected to contribute to the variation in data, they were included as

sources of variation in the model used for the analysis of data.

It is clear from the analysis of the data that for most performance measures the subject
effect was significant. Although the results were not surprising, characteristics of
individual subjects responsible for causing significant effects could not be determined by

this experiment. However, the data were closely examined to observe individual traits.

It was observed that certain subjects were more inclined to use a guessing strategy than
others. While most waited to gather diagnostic information, there were a few that attempted
to diagnose the problem based on initial symptom alone and without conducting a single
diagnostic test. Even though the guessing strategy was significantly influenced by the
training conditions, there were individual in each of the three training groups that

indulged in guessing solutions.

214

There were some subjects in Groups II and III who became very conservative and spent
time eliminating all probable causes that could be linked to an observed symptom before
identifying the most likely failure. The conservative behavior was probably due to the
explanations concerning affected gauges received by these subjects at the end of the
session. Perhaps, these explanations made some of the subjects realize that the gauges

could be affected in the same manner by multiple failures and hence the cautious behavior.

Also, there were some subjects in Group III who used the active tutor as an on-line associate
to solve problems during training. These subjects were not able to solve some of the test
problems when the tutor was withheld from them. These students confessed their

dependence on the tutor in response to a query in the exit questionnaire.

Effect of Problem

There were ten problems used in the data collection phase of the experiment. Six problems
involved a blocked shut mode of failure, two involved a stuck open mode of failure and the
remaining two involved a leak out mode of failure. The three modes of failure were

equally distributed in the seen and unseen problems.

Although the problems could be categorized depending upon the mode of failure, the extent
of difficulty involved in solving these problems was not necessarily dependent of the mode
of failure. Difficult as well easy problems could be found in each mode of failure. Since
there was no formal method available to measure the degree of difficulty of these problems,
categorization of problems depending upon the degree of difficulty was not possible.
However, from marine engineers (Marine Safety International, 1983) we understood that
not all problems were equally difficult. Therefore, problem (nested within seen status) was
considered a possible source of variation in the data and included in the model to be used

for the analysis of data.

The significant problem effect was primarily due to the diverse nature of the failures.
Failures that affected subsystems with many interactions with other subsystems often had
failure effects propagated to large portions of the system. For such failures, large number
of abnormal gauge readings could be observed in a short period of time. If initial
investigations were focused away from the location of the fault it often led to the formation

of wrong hypothesis and many irrelevant diagnostic tests were conducted.

25

While analyzing the data for problem effect, one set of data was very conspicuous. It was
observed that a particular unseen problem was not solved on 11 occasions; three times by
subjects in Group I and four times by subjects in Groups II and III This problem involved
ruptured boiler tubes. It is considered as one of the more difficult prob'ems by experts. The
reason for the difficulty is that the failure effects are rapidly transmitted across many
interacting systems. Moreover, the subjects had not seen any failure of this type during the
training period and as such were not prepared to deal with it. Therefore, their inability to

solve this problem was not at all surprising.

Subjective Evaluation

Along with the analysis of the experimental data, a subjective evaluation of the
instructional system was also done using comments made by the subjects and information

solicited from them via the three questionnaires.

The comments made by subjects were very encouraging. During training, those trained
on just the simulator repeatedly requested for an explanation of the solution and wished
they had some means to distinguish the fluid paths in the schematic. They also thought that
their ability to diagnose faults would have been strengthened had they been able to find out
the function of some components. All these features that subjects in Group I wished for were
provided to the subjects using the tutor and they appreciated the help it provided them. Some
of the comments provided by the subjects from each of the three groups are reproduced in

Appendix G.

It was also observed that subjects in the unaided group used the paper provided to them for
comments less often than subjects in the two aided groups. Whereas subjects in the two
aided groups used the paper to primarily record their incorrect diagnoses, subjects in the
unaided group used it extensively to record the diagnostic tests conducted as well. This
shows that the clipboard featur« provided by the tutor was a useful aid.

The two identical questionnaires (Questionnaires 1 and 2) filled by subjects at the start and
end of the training phase provided useful information about the knowledge acquired by the
subjects. More subjects from the aided groups than the unaided group performed better
while answering the same questions a second time at the end of training. Since the
questions in these questionnaires were based on the material taught by the tuter, the results

imply that the tutoring was effective.

216

The information gathered from the exit questionnaire (Questionnaire 3) was also useful.
One of the questions in the questionnaire was related to the same unseen problem
concerning ruptured boiler tubes that could not be solved by 11 subjects. The question
required subjects to identify the affected gauges and their gauge readings when there was
excessive leakage of feed water from boiler tubes. Since subjects, irrespective of their
training group, were never given the solutions to the problems during the test sessions,
there was no reason to expect different answers from subjects in aided and unaided groups.
Moreover, these eleven subjects had no idea that the question they were required to answer
was related to a problem they had left unsolved. Therefore, there was also no reason to
believe that the subjects, in answering the question, will try to recall the affected gauges

from memory.

The answers given by the 11 subjects to this question concerning ruptured boiler tubes
provided some useful insight into the troubleshooting knowledge necessary to diagnose
faults. While all the eight subjects from the aided groups correctly identified the affected
level gauges along with their abnormal readings, only one out of the three subjects from the
unaided group could answer the same question correctly. This implied two things. First,
the tutor helped the students improve their causal reasoning. This enabled the eight
subjects trained with the tutor to consider failure propagation effects and correctly identify
the affected gauges and their readings. Second, knowledge of how components fail and
how failure effects get propagated is not necessarily adequate to diagnose faults. This
explains why, in spite of the causal knowledge these subjects acquired from the tutor, they
were unable to apply it for solving the problem.

In addition, Questionnaire 3 helped corroborate the evidence available from the data that
some students using the active tutor had become somewhat dependent on it to solve
problems. Three students admitted that they had used the active tutor as an on-line
associate and that perhaps was responsible for their poor performance when they had to

work without it.

Finally, Questionnaire 3 also helped solicit constructive comments from the subjects about
the tutor. A sample of some these comments is provided in Appendix H. These comments
give us a good idea about the features of the tutor and its interface that were appreciated and

those features that were used most often.

a7

Discussion of Results

Analysis of the experimental data reveals that subjects in the unaided group developed a
troubleshooting strategy distinctly different from the subjects that were trained using the
computer-based tutor Vyasa.

The unaided group did not devise any good and consistent troubleshooting strategy and
often relied on unguided search for the cause of the failure. As such, they conducted a large
number of diagnostic tests with very few that were relevant to the failure heing
investigated. In the absence of a guided strategy and in their pursuit for a quick diagnosis,
the unaided group performed a large number of incorrect diagnoses and investigated large

numbers of unaffected schematics, subsystems and fluid paths.

On the other hand, the two groups aided by the tutor hypothesized probable failures and
conducted diagnostic tests to either strengthen or weaken their hypotheses. As such, most of
the informative actions they took were relevant to the failure being investigated. In spite of
the same motivation as the unaided group to solve the problems fast, the aided groups did
not indulge in guesswork. Most of their guesses were a result of panic that set in only when
they were running out of time. Also, since their investigations were more focussed on
hypotheses that explained observed abnormal behavior, the aided groups investigated fewer

unaffected schematics, subsystems and fluid paths.

While subjects in each group solved approximately the same number of test problems, the
unaided group did it in shorter time, on an average. This was not at all surprising
considering that this group relied heavily on guessing. Thus, their good performance
based on quick diagnosis of failures was offset by the numerous incorrect diagnoses for

each problem.

For both the aided and unaided groups, the performance on most measures was better with
seen than unseen problems. Among seen problems, those seen twice were often better
recalled indicating that practice helped subjects develop symptom-cause associations. But,
for Group III, it appears that the practice time was reduced due to other activities and this
explained the relatively poor performance of subjects from this group when solving more
familiar problems. Both the aided groups, however, performed better than the unaided
group with unseen problems indicating that the training they received was successfully

transferred to unfamiliar situations as well.

218

There were slight differences in the performance between the two aided groups. Those
trained with the active tutor made less guesses and hence fewer prematuré diagnoses but
they were also able to solve less problems. Most of the variation in the performance between
the two aided groups seems to have been caused by individual differences. There were
some in Group III (the group with active tutor) that seem to have become somewhat
dependent on the tutor and their performance suffered once the tutor was withheld in the test
sessions. There were others in both the aided groups that became overly conservative and
often investigated and eliminated less likely alternatives as well. While this may not
necessarily be a bad troubleshooting approach considering that incorrect diagnoses are
costly, any delay in diagnosing the fault can also be costly. Such accuracy-time tradeoffs
are more a result of individual preferences rather than the instructional strategy used for

training.

Conclusions

From an analysis of the results, it is clear that the tutor in both the passive and the active
modes helped the students to develop useful troubleshooting strategies. Those trained by the
tutor formed plausible failure hypotheses based on observed symptoms and systematically
eliminated them by conducting appropriate diagnostic tests. In comparison, those trained
without the tutor did not develop good troubleshooting strategies. They relied rather heavily
on guessing the solution. Furthermore, the tutor helped the students to recognize and
integrate crucial diagnostic information in a timely manner that the students without the
tutor were unable to do. Students trained by the tutor were better prepared for unfamiliar

situations than those trained on the simulator.

The data also indicated that the effectiveness of a tutoring strategy depended upon the
individual student. For example, the strategy of providing explanations for all observed
symptoms for each problem was intended to help the students develop a proper causal model
of fault propagation. Some students who learned to map salient symptoms to causes from
these explanations became overly conservative. During troubleshooting they spent a lot of
time eliminating all probable hypotheses linked to an observed symptom even when
sufficient evidence in support of a highly probable hypothesis had been collected. Another
tutoring strategy adopted by the active tutor was to provide help in building, refining, and

eliminating failure hypotheses. In this capacity the active tutor came to be perceived by

219

some students as an on-line associate. These students often took the help of the active tutor
to refine their failure hypotheses and thus became dependent on the tutor to solve problems.

Performance of these students deteriorated when the active tutor was withdrawn.

In summary, results of the experiment show that a simulator alone is inadequate for
training purposes. A simulator in conjunction with an effective computer-based tutor can,
however, help develop efficient troubleshooting skills. Such a tutor must teach operators to
identify useful diagnostic tests, use the results of these tests to formulate plausible
hypotheses concerning failure, and systematically refine the hypotheses based on new
diagnostic data until the cause of failure is identified. Operators trained by such a tutor are
likely to rely less on guessing and more on abstract reasoning. Consequently, these
operators are likely to provide incorrect diagnoses less often. In real-world, where there is
a cost associated with each incorrect diagnosis, less incorrect diagnoses can save valuable
time and reduce troubleshooting costs. However, since not all students are equally
receptive to every tutoring strategy, provisions must be made in training programs for
individual preferences and differences in abilities and styles. Otherwise, student's may
become overly conservative or too dependent on the tutor for help. While conservative
behavior may not necessarily be bad, too much dependence on the tutor is undesirable.
Therefore, assistance provided by the tutor that directly helps students in solving the

problems must be avoided to control the students' dependence on the tutor.

Also, use of certain features of the tutor, like hypothesis aiding, may be useful in other
applications such as an on-line operator's associate. Possibility of success of hypothesis
aiding in an on-line operator's associate application was indicated by the performance
data of students who exploited this feature of the active tutor to successfully solve problems
during training. They frequently provided the tutor with failure hypotheses and sought
advice on each one of them. As a part of its counseling task, the tutor would check if
evidence had already been gathered to reject the hypothesis, and if so, the student would be
told about it. Thus, the students in fact assigned the tutor the task of filtering out the less
likely alternatives and based on the tutor's advice refined their hypotheses till they could

identify the failed component with reasonable amount of ccrtainty.

This concludes the discussion of the experimental results. The next chapter provides a
summary of the results of this research and concludes with recommendations for future

research.

ANOVA Tables

Table 7.4a Problems Solved

Source of Adj [Significant
Variation df | MS F Test Statistic F a=0.05
Cond 2 0.0816 | 1.18 1.18 NO
Seen 2 01672 | 2.42 | MSSEEN/ MSPROB | 0.39 NO
Cond*Seen 4 0.0405 | 0.59 0.59 NO
Subj(Cond) 27 | 00768 | 1.11 1.11 NO
Prob(Seen) 7 0.4303 | 6.24 6.24 YES
Cond*Prob(Seen)| 14 | 0.0365 | 0.53 0.53 NO
Subj*Seen(Cond) | 54 0.0432 | 0.63 0.63 NO
Error 189 | 0.0690
Table 7.4b Troubleshooting Time
Source of Adj [Significant
Variation df | MS F Test Statistic F o =005
Cond 2 27.92 | 6.02 | MSCOND/MSSUBJ | 2.71 NO
Seen 2 83.28 | 17.94 | MSSEEN/MSPROB | 1.06 NO
Cond*Seen 4 3.30 0.72 0.72 NO
Subj(Cond) V44 1029 | 2.21 221 YES
Prob(Seen) 7 78.39 | 16.87 16.87 YES
Cond*Prob(Seen)| 14 1.90 | 041 0.41 NO
Subj*Seen(Cond) | 54 293 | 0.63 0.63 NO
Error 165 4.64

Table 7.4c Number of Informative Actions

Source of Adj |Significant
Variation df | MS F Test Statistic K o =0.05
Cond 2 17437 | 9.84 | MSCOND/MSSUBJ | 2.65 NO
Seen 2 11388 | 6.43 | MSSEEN/MSPROB | 0.19 NO
Cond*Seen 4 7.071 | 0.40 0.40 NO
Subj(Cond) 27 65.76 | 3.71 3.1 YES
Prob(Seen) 7 579.14 | 32.68 32.68 YES
Cond*Prob(Seen)| 14 7.77 | 0.44 0.44 NO
Subj*Seen(Cond)| 5 1854 | 1.05 1.05 NO
Error 189 17.72

Table 7.4d Percentage of Relevant Informative Actions

Source of Adj [Significant
Variation df | MS F Test Statistic F o =0.05
Cond 2 0.470 | 9.87 | MSCOND/MSSUBJ | 3.64 YES
Seen 2 0.257 5.39 | MSSEEN/MSPROB | 0.927 NO
Cond*Seen 4 0.063 | 1.31 1.31 NO
Subj(Cond) 27 0.129 | 2.71 2.71 YES
Prob(Seen) 7 0.277 | 5.81 5.81 YES
Cond*Prob(Seen)| 14 0.036 | 0.75 0.75 NO
Subj*Seen(Cond) | 54 0.032 | 0.67 0.67 NO
Error 189 0.048

Table 7.4e Percentage of Guesses

Source of Adj [Significant
Variation df | MS F Test Statistic F o=0.05
Cond 2 1.672 | 18.09 | MSCOND/MSSUBJ | 8.4 YES
Seen 2 2.326 | 25.17 | MSSEEN/MSPROB | 8.1 YES
Cond*Seen 4 0.070 0.76 0.76 NO
Subj(Cond) 7 0.199 2.16 2.16 YES
Prob(Seen) 7 0.287 | 3.11 3.11 YES
Cond*Prob(Seen)| 14 0.040 | 043 0.43 NO
Subj*Seen(Cond)| 0093 | 1.01 1.01 NO
Error 189 0.092

Table 7.4f Instances of Investigations in Unaffected Schematics

Source of Adj | Significant
Variation df | MS F Test Statistic F o=0.05
MSCOND /
Cond 2 110 475 (MSSUBJ + 313 NO
MSCOND*PROB
- MSERROR)
Seen 2 3.08 13.30 MSSEEN/ 6.90 YES
MSCOND*PROB
Cond*Seen 4 0.10 042 | MSCOND*SEEN / | 0.22 NO
MSCOND*PROB
Subj(Cond) 27 | 014 | 059 0.59 NO
Prob(Seen) 7 0.91 3.94 MSPROB / 2.04 NO
MSCOND*PROB
Cond*Prob(Seen)| 14 0.45 1.93 1.93 YES
Subj*Seen(Cond)| 5 0.13 0.55 0.55 NO
Error 189 0.23

Table 7.4g Instances of Investigations in Unaffected Subsystems

Source of Adj [Significant
Variation df | MS F Test Statistic F a = 0.05
Cond 2 5.8787 | 12.88 | MSCOND/MSSUBJ | 6.74 YES
Seen 2 3.8316 | 8.38 | MSSEEN/MSPROB | 0.86 NO
Cond*Seen 4 0.4583 | 1.00 1.00 NO
Subj(Cond) 27 | 08706 | 1.91 1.91 YES
Prob(Seen) 7 44595 | 9.77 9.77 YES
Cond*Prob(Seen)| 14 | 0.7590 | 1.66 1.66 NO
Subj*Seen(Cond)| 54 0.3800 | 0.84 0.84 NO
Error 189 | 04563

Table 7.4h Instances of Investigations in Unaffected Fluid-paths

Source of Adj | Significant
Variation df | MS F Test Statistic F o =0.05
Cond 2 |220162] 18.88| MSCOND/MSSUBJ | 6.61 YES
Seen 2 7.6838 | 6.59 | MSSEEN/MSPROB | 057 NO
Cond*Seen 4 0.5488 | 047 0.47 NO
Subj(Cond) P44 33396 | 2.86 2.86 YES
Prob(Seen) 7 [13.3200)] 11.43 11.43 YES
Cond*Prob(Seen)] 14 0.7160 | 0.61 0.61 NO
Subj*Seen(Cond)| 4 12950 | 1.11 1.11 NO
Error 189 1.1656
24

CHAPTER VIII

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

The research reported in this dissertation is summarized in this chapter. In addition, some
implications of this research in the field of science and engineering are discussed. A

discussion of future research issues concludes this chapter.

In Chapter I, inadequacies of current training programs for diagnostic problem solving in
real-world engineering systems were identified. An intelligent computer-based tutoring
system was considered a good alternative to current training programs. Since this
alternative was seen to hold promise, issues related to its development became the focus of

this research.

In Chapter II, it was observed that in spite of the progress made in the field of intelligent
tutoring, not many ideas of existing ITSs have been successfully extended to real-world
applications. One of the reasons for the limited success was attributed to the simplicity of
the domains and tasks considered by most existing ITSs. Real-world engineering
systems, in contrast, are more complex due to their size, interaction between subsystems,
and dynamics. In addition, problem solving by human operators in many of the
engineering systems is often not well-understood. Therefore, development of computer-

based training programs for real-world applications still poses many practical problems.

Furthermore, the few applications that do exist for training operators of engineering
systems are not supported by an explicit structured methodology for organizing the large
volume of interrelated knowledge associated with these systems. Without such a
framework for organizing knowledge, rapid construction of tutoring systems for new
domains continues to be a complicated task. Therefore, the current state of the technology
needs to be supplemented by a methodology for organizing system and task knowledge in a

coherent architecture to facilitate rapid construction of ITSs for complex dynamic systems.

In Chapter III, a framework for organizing the various components of knowledge in an
instructional system was proposed to consolidate the current ITS technology. The purpose
of the knowledge organization framework was to facilitate quick construction of
intelligent tutors for diagnostic problem solving in complex dynamic domains. In order to
demonstrate the feasibility of the proposed knowledge organization framework, the
framework was first applied to decompose system, task, and pedagogical knowledge for
teaching diagnostic problem solving task in a marine power plant domain. Next, the
components of knowledge were organized in a coherent ITS architecture to develop a
prototype instructional system. Implementation details of this prototype, Turbinia-Vyasa,
were described in Chapter IV, Details of interaction with this instructional system were
described in Chapter V. Finally, an experimental study was conducted to evaluate the
architecture of the instructional system. Details of the experiment were described in

Chapter VII and its results discussed in Chapter VIIIL.

The results of the experiment established the viability of designing and implementing an
effective tutoring system for supervisory control operation. The results also demonstrated
that instructional systems that integrate intelligent tutors with a simulator and provide
access to multiple, complementary, system representations via direct manipulation

graphical interfaces can contribute greatly to an effective training program.

Implications of the Research

The research reported is a contribution to the field of training for diagnostic problem
solving in realistic, complex dynamic domains. It has contributed a methodology to build
computer-based training programs that can provide trainees practice and exposure to real-
world problems. The research has also developed a vocabulary to comprehend and
organize knowledge that is used not only to identify failures but also to categorize modes of
failure, recognize typical abnormal system behaviors associated with different modes of
failure, and explain cause-effect associations. In addition to these contributions, the
research has several implications for science and engineering. Some of these

implications are discussed below.

Researchers interested in postulating theories of cognition can use Turbinia-Vyasa to study
the process of diagnostic problem solving in a realistic environment. For example,

differences in the novice and expert problem solving behaviors can be determined by

226

examining the differences in the troubleshooting strategies used by novices and experts to

solve the same problem. Also, the process of transformation from a novice to an expert in
terms of changes or modifications in the troubleshooting strategies can be determined over
time using Turbinia-Vyasa. In addition, differences in troubleshooting strategies for
familiar and unfamiliar situations can be examined to find what type of knowledge and

experience prepare operators to diagnose unseen faults.

For the Al community, this research demonstrates the applicability of Al techniques
beyond the "micro-world" of simple domains. If knowledge is properly organized and its
granularity and detail appropriately controlled by the context of the problem solving
activity, the volume of knowledge that must be represented to make the ITS effective is
manageable. Therefore, there is no reason why further progress in the field of intelligent

tutoring should suffer despite the complexities of "real-world" domains.

For those involved case-based reasoning research, this research provides a structured
indexing mechanism. The structure-function-behavior model provides a structured
taxonomy for effective memory organization which can be a good alternative to some ad
hoc methods of indexing often used in case-based knowledge organization. Even for those
in cognitive science who study organization of knowledge in long term memory, the
vocabulary provided by the structure-function-behavior model can help express and

explain memory organization in humans.

From an engineering perspective, this research is expected to motivate the development of
tutoring and training systems and implementation not only within the navy but also in
other organizations where training is of prime concern and traditional methods are not as
effective. The results of this research should encourage the use of computer-based
instructional systems to reinforce the current simulator-based training for operators of
complex dynamic systems. This should eventually help us develop more effective training
programs. Furthermore, the tools provided by this research can help build cost effective
prototypes that may be needed to convince people of the benefits of using computer-based

training.

Also, Turbinia-Vyasa provides engineers with a cost effective way to try new ideas and get
a good estimate of the success of a proposed innovation without having to cope with the risk
of adversely affecting performance in the real environment. Through trials on Turbinia-

Vyasa, engineers can design new control room displays for power plants to improve the

27

performance of supervisory controllers. Furthermore, since most operators are prone to
resist changes in their work environment, Turbinia-Vyasa can also be used to determine

apriori the willingness of operators to accept changes.

In conclusion it must, however, be emphasized that while this research should reduce the
complexity of designing and developing intelligent tutoring systems, the task of
knowledge acquisition for a new domain will remain a difficult task. The developer must
acouire the domain-specific knowledge about the system, the operator’s task, and
instructional strategies before the design tools proposed here can be used to etfectiveiy

organize the knowledge for an intelligent tutoring system.

Future Research

In addition to the discussion in the previous section, this research opens up several avenues
for future research. Recommendations for future research include both improvements and
extensions of current work. Some of the issues that can be explored in future are briefly

discussed in this section.

First, the teaching capability of Turbinia-Vyasa can be enhanced by providing students the
ability to manipulate control devices and observe the effects of their actions. Since the
simulated system behavior in Turbinia-Vyasa is computed from individual behavior of
modeled components, providing the instructional system with this additional capability

will require modeling the control devices for more than a single control setting.

Second, the scope of the diagnostic problem solving task taught by Turbinia-Vyasa can be
increased by refining the simulation methodology to include the ability to simulate
multiple failures and situations arising from cascading of failures. Also, since gauges
{sensors) and failures in them have not been modeled in Turbinia-Vyasa, it excludes a
large number of possible real-world scenarios that cannot be considered by the
instructional system. Addition of these features in Turbinia-Vyasa can make the training

environment more realistic.

Third, the scope of training imparted through Turbinia-Vyasa can also be extended to
include more details of the failure. In engineering systems like power plants, fault

diagnosis is seldom confined to detecting the failed component. Instead, it also involves

28

repair and/or replacement of the component or a part of it. Turbinia-Vyasa at present has no
knowledge of the parts that make up the components of a power plant. By remodeling
components as collection of subcomponents (parts), the tutor can be given the capability to
train the mechanics that are actually responsible for repairing the failed unit. In addition,
if the tutor provides students the capability to replace suspected components and observe the
effects of the change on system behavior, it may add to the student’'s understanding of

failures and help rectify misconceptions.

Fourth, the schematic interface of Turbinia-Vyasa can also be improved by using better
graphics to represent meaningful objects on the schematic. For instance, engineers have a
standard method of graphically representing pumps and turbines. In engineering
drawings, both these components are commonly represented by a trapezoid. For pumps that
compress gas, the cross section of the trapezoid decreases in the direction of flow. For
turbines where gas is expanded, the cross section of the trapezoid increases in the direction
of flow. Thus, the trapezoidal shape of pumps and turbines indicates whether the process
involved is compression or expansion in the direction of flow. Therefore, changing the
shapes of pumps and turbines in accordance with standard engineering practices in
Turbinia-Vyasa's schematic interface can help students develop a better mental model of
the functions performed by these components. Furthermore, since the technology now
exists to incorporate photographic images, students can be shown the structural changes in
the components that are responsible for the failure. Use of high resolution graphics and
photographs can improve a student's understanding of the failures and their effects on the

system behavior.

Fifth, an authoring tool that can elicit knowledge about new failures from even those who
are not familiar with the implementation details of Turbinia-Vyasa can add to the
versatility of the instructional system. In the current version of Turbinia-Vyasa, there is
provision for expanding the knowledge-base of specific cases of failure but the task of

adding knowledge requires understanding the details of implementation.

Finally, the current research provides a strong basis for a research program to develop
intelligent operator associates. An intelligent tutor- plus-operator-associate that
integrates the functional characteristics of both an aid and an on-line associate can be
used with both the training simulators and actual systems. Such a tutor-associate can help

aid the human operator during diagnostic problem solving by providing help at appropriate

levels, compensate for routine system failures and help the human dc. . ".p the expertise

necessary for problem solving during system operation.

APPENDIX A
INSTRUCTION MANUALS
o
®
o
®
o
21

OPERATOR INSTRUCTIONS FOR TURBINIA

TURBINIA is a simulated marine power plant. As a naval trainee, you will learn to
troubleshoot common failures in a marine power plant using TURBINIA. This
instructional manual will describe your interaction with TURBINIA after a brief
description of a typical marine power plant and its control.

ntr ion

A marine power plant is a collection of components configured to produce mechanical
work from thermal energy. This energy transformation takes place in components called
the turbines. A ship that uses steam as a medium to carry the thermal energy to the turbines
is said to be steam-driven. In a steam-driven ship the source of thermal energy is usually
fossil or nuclear fuel. This section describes the functioning of a fossil fuel-oil fired,
steam-driven marine power plant.

The process of producing mechanical work in a steam-driven marine power plant can be
decomposed into several stages. Each stage is associated with one of the four phases in the
steam cycle: generation, expansion, condensation and feed.

Steam Generation

Figure 1 shows the configuration of components in the generation phase of the steam cycle.
This phase of the steam cycle takes place in the boiler. The boiler is comprised of tubes and
a steam drum. The boiler tubes contain water that is heated by flue-gases resulting from
the fuel burned in the furnace. This heat transfer is by conduction through the tube walls.
Heating of water in the tubes produces steam. This steam accumulates over the water
surface in the steam drum and is called saturated steam. Saturated steam is sometimes
also referred to as wet steam because of its moisture content.

Continuous steam generation in the boiler increases the steam pressure in the drum.
Boilers are rated by the steam pressure they can handle in the drum. In a 1200-psig boiler,
for example, the maximum steam pressure permitted is 1200-psig. A safety valve is
activated to release pressure whenever it exceeds the maximum value.

The steam pressure in the drum controls the temperature at which the water boils in the
drum. Since the temperature of saturated steam accumulating above the water surface is
the same as the temperature of the water, the saturated steam temperature depends upon the
steam pressure. This temperature at which the water and saturated steam coexist in the
drum is called the saturation temperature. The highest possible saturation temperature is
attained in a boiler when the boiler operates at its maximum rated pressure. Since the
thermal energy of steam in the drum is proportional to its saturation temperature, the heat
content of the saturated steam is maximum at the highest boiler operating pressure.

Feed Feedwat.er+
. : Economizer mu
s A
3
[V]
Q
B
e S s Lo o o o o
PP A SV AL SV B A SV N IR AT Y A S P A A SV AP A B B B B S N
//’//L’ PRV VAV APV
VA A A SR A 4 rd g 7 7 7/ 4
P A A A 4 el Sy 277 A
',,h 7 7 SNV 722 7 A
///s P A I 2 S B B P AV A A A BV B & "B B B &
IIIQ PV AV BV P P A A A A AP & "B Y A A
I//g P SV R P SRV S A B B 8 5 " A
//l'g PV RV RV A VAT N S R R B A 7 A
¢ v QO raws 2 Lolnl bkrlrlrbria? ¥ E 7 1
T A “‘ PP T . T P A 7 o 7 4
/////L’.:: . L P . S
/IIIIIII::--- : : . Ilfm s A
//IIIIIII;‘I;;I’I‘;;;}‘}-;; Py 4 7 4
II///IIIIII/I/AIIIIIIIII/l/ld
4BOHJER'IIIIIIII/IIIIIIIIIV’II‘
. T A A A A S S VA S B B B B B S 5 5 "B W W
Power Superheated >
Ge e | T Superheater
neration steam
F]ue?gas
lEuel-air mixture
Furnace

Figure 1. Steam Generation

Even though the boilers are designed for high operating pressures, the saturated steam does
not contain enough thermal energy to operate the turbines at their best efficiency. Thermal
energy of steam is increased by passing it through tubes in the section of the boiler closest to
the furnace. This section of the boiler is commonly known as the superheater. The
superheater is responsible for adding heat to saturated steam at constant pressure. The heat
added to saturated steam in the superheater is called sensible heat. Sensible heat increases
the temperature of the steam beyond the saturation temperature and makes it drier. The
steam from the superheater is called superheated steam and the increase in steam
temperature in the superheater measures the degree of superheat.

Steam Generation

Superheated steam

—» Throttle

Astern-
Turbine

v

Hp-Turbine

Lp-Turbine

Steam Condensation

v

Figure 2. Steam Expansion

Steam Expansion

The second phase of the steam cycle takes place in two steps. First, the superheated steam
from the boiler expands in a high pressure turbine to convert thermal energy to mechanical
work. Then, since the steam still contains a considerable amount of thermal energy, it is
expanded further in a low pressure turbine connected to the exhaust of the high pressure
turbine. Figure 2 shows the arrangement of low and high pressure turbines in a power

plant.

Steam Expansion

Saltwater

Condenser l

Scoop
Hotwell | & Valve — Scoop }@—— Sea
s
: v
3 Se
Discharge < Main a
COmgnsate Valve Circulatoy ¢ Strainer
Pump
Cpd-Valve Gland|Steam

Condensate . |Gland-Exhaus First-Stage
P Condenser —> Heat:'g

Deaerating
Atmospheric Feed
Drain-Tank Tank

Feed

Figure 3. Steam Condensation

Steam Condensation

After expansion, the third phase of the steam cycle is steam condensation which takes place
in the main condenser (Figure 3). The condenser is a sealed container with tubes that
carry cold sea water. When the steam passes over these tubes it loses latent heat to the cold
water. When sufficient latent heat is withdrawn from the steam, it changes phase and
turns back into water, called condensate.

Steam pressure at the turbine exit is low and steam can flow into the main condenser only
if the pressure in the condenser is lower. Since the condensate occupies less volume than
the same amount of steam and because the condenser is a sealed container, condensation

creates a vacuum in the condenser shell. This vacuum in the condenser shell helps
maintain a continuous flow of steam from the turbines to the condenser.

As the steam from the turbines turns into condensate, it flows into a collecting tank called
the hotwell. The condensate-pump then pumps the condensate to the deaerating-feed-tank
via the gland-exhaust-condenser. In the gland-exhaust-condenser, the condensate from
hotwell serves as the cooling medium to condense steam from the turbine glands. While
the condensate from the gland-exhaust-condenser flows to the deaerating-feed-tank, the
condensed gland steam is returned to the condensate system by way of atmospheric-drain-
tank.

Feed

Feed, the last phase of the steam cycle, begins at the deaerating-feed-tank. The deaerating-
feed-tank is a storage tank for feedwater. It also contains apparatus to remove dissolved
oxygen entrained in the condensate. The other major components in the feed phase are the
main feed-pump, the feed-water-regulator and the economizer. These components are
shown in Figure 4. The main feed pump is responsible for pumping water to the boiler. The
feed-water-regulator regulates feedwater into the economizer enroute to the boiler. The
economizer is a heat exchanger that preheats the feedwater.

Steam Condensation

\

Deaerating
Feed
Tank

Feed-Pump -—> F}‘Ziegduv{::::

Economizer

v

Steam Generation

Figure 4. Feed

Each of the four phases of the steam cycle perform an important system function. The
collection of components responsible for the function constitute a functional subsystem.
Thus, steam generation, steam expansion (or power generation), steam condensation, and
feedwater preheating are also essential subsystems of a marine power plant. In addition, a

power plant typically has subsystems that perform other functions necessary for its
operation. Combustion, auxiliary steam use, control air, lubrication, and saltwater service
are examples of such subsystems.

Combustion involves burning the fuel-air mixture prepared in the burner. The thermal
energy released during combustion is used to heat water in the boiler. The components that
make up the combustion subsystem are shown in Figure 5. These components lie along two
fluid paths: combustion air and fuel-oil.

Combustion air is supplied to the burner by a forced draft fan operated by either a steam
turbine or an electric motor. Fuel-oil is supplied to the burner by pumping fuel from a
settling-tank. For proper combustion, both the combustion air and the fuel-oil need to be at
the proper pressure and temperature. Furthermore, for complete combustion the mass of air
required is fourteen times the mass of fuel-oil.

Atmosphere
Forced-Draft
Fan
Air-Heater
Wind-Box
* Fuel-oil Heater
Air-Register 1
Fuel-oil Fuel-Pump
Control .
Valve <_ Strainen *
Sogert Masrer Seviing
Ge&;mbsymm“:‘« Burner - Valve Tank

Figure 5. Combustion Subsystem

Incorrect quantity or improper heating of either the combustion air or fuel-oil causes
combustion problems. Inadequate quantity or insufficient heating of combustion air and
excessive flow of fuel-oil or insufficient heating of it causes incomplete combustion.
Incomplete combustion causes dark smoke in the boilers. On the other hand, excess
quantity of combustion air in the fuel-air mixture either due to increased flow rate of air or
reduced flow rate of fuel-oil extinguishes the flame in the furnace. Excessive preheating of
either the combustion air or the fuel-oil causes yet another combustion problem called
preignition. In preignition, the fuel starts to burn before it reaches the burner.

237

The auxiliary steam use subsystem shown in Figure 6 uses desuperheated steam for
various purposes. Desuperheated steam, unlike the superheated steam, is low pressure
steam. Desuperheated steam is obtained by passing superheated steam through the
desuperheater. Low pressure desuperheated steam is used (1) by the auxiliary power units
to run equipment such as the feedwater-pump, fuel-pump, saltwater-service-pump and the
forced-draft -fan; (2) to preheat the fuel-oil and the feedwater in the deaerating-feed-tank;
and (3) by the the gland seals to prevent leakage of air into the turbine casings and steam
leakage out of the casings.

Feedwater
Preheating «@§—{ Hp-Reducing-Station fe———
Subsystem

(to preheat feedwater)

CS:mhlstim &—] Lp-Reducing-Station [———

(to preheat fuel-oil)

(to turbine gland seals) «§ Desuperheater
Combustion Atomizing-Steam <
Subsystem < Reducing-Station
(to atomize steam) Steam Generation
Subsystem

Feedwater
Preheating «@§—{ Feed-Pump-Turbine (q§——1
Subeystem

(to operate feed-pump)

Figure 6. Auxiliary Steam Use Subsystem

The control air subsystem is responsible for distributing control air tc many valves and
regulators. These valves and regulators are operated by the control air. Figure 7 shows the
components that constitute the control air subsystem of a marine power plant.

Atmosphere

Y

Compressor f—Jp{ Air-Cooler

A

v Auxiliary Steam Use
Air-Receiver Subsystem

*

Pressure-Switchle§ —Pp»{ Air-Dryer

v

Combustion
Subsystem

Feedwater Preheating
Subsystem

Figure 7. Control Air Subsystem

R

Dehumidifier

Turbine

* Gears Bearings

Lube-Oil
Cooler

?

Lube-Oil Thrust
Pump Block

1 J ! r Separator

Lube-0il-Sump f——

Figure 8. Lubrication Subsystem

The lubrication subsystem has the primary purpose of lubricating moving parts and
removing the heat producec by friction. The subsystem consists of a pump that draws lube-

oil from the oil-sump and distributes it to those components that need lubrication. Figure 8
shows the components in the lubrication subsystem.

The saltwater service sibsystem distributes cold sea water to remove heat from units
dissipating heat. Figure 9 shows sections of the power plant cooled by saltwater.

Saltwater
Service
Pump

Unit

*

Saltwater
Strainer

%

Sea

Unit

Unit

-Jp» Air-conditioning -
- Turbogenerator —Jp
Unit
r’ Diesel-generator —Jp

P Lube-oil Cooling ~Jp-

\

Sea

Figure 9. Saltwater Service Subsystem

Combustion
Subsystem —

Steam Generation|
Subsystem

A

Power Generation
Subsystem

Auxiliary Steam Use
Subsystem

Y

Feedwater Preheating

Subsystem —

Steam Condensation
Subsystem

Figure 10. Interacting Subsystems of Marine Power Plant

This section described the decomposition of a marine power plant into nine functional
subsystems. It also described the role each subsystem plays in achieving the overall goal of
producing power. The interaction between the subsystems to produce power is summarized
in Figure 10. For constant power supply, the operating conditions for these subsystems can

be set to safely meet the demand. However, the demand for power in a ship is never

constant but varies with load. Control systems manage the power plant so that it can satisfy
the changes in the demand for power due to fluctuating load. The boiler control system is
the most important among all control systems in a marine power plant. The boiler control

system of mosi modern INavy vesseis is sophisticated and needs minimum human

intervention. Some components of the automatic boiler control system (ABC) are described
next.

, i Boiler C 1S

Navy vessels typically have the following three ABC systems: automatic combustion
control (ACC), feedwater control (FWC), and makeup and excess feed control systems.
These control systems perform the functions of measuring, comparing, computing and
correcting. In each control system, a state value of interest is measured; compared to a
desired value; a new operating condition, if necessary, is computed; and finally a
correction made in the operating conditions to reduce the deviation between the measured
and the desired value of the state.

Automatic Combustion Control System. The function of the automatic combustion control
system is to maintain the boiler drum pressure at a constant value during steady and
changing load conditions. The ACC system accomplishes this task by

(1) constantly measuring the steam drum pressure and combustion air flow;

(2) comparing the steam drum pressure to the specified designed value;

(3) computing the amount of change, if any, in the furnace combustion; and

(4) correcting furnace combustion as needed.

When the steam demand on the boiler is increased, the steam drum pressure decreases
because the rate of steam withdrawal from the drum becomes greater than the rate of steam
production in the boiler. This pressure drop is sensed by the ACC system and an increase
in furnace combustion is computed to meet the increase in the demand for steam.
Computing the increase in furnace combustion involves computing the increase in the
supply of combustion air and a proportionate increase in the supply of fuel-oil to assure
complete combustion. The ACC system controls the combustion air flow by regulating the
supply of steam to the forced draft fan turbine and controls the fuel-oil flow by positioning
the main-fuel-oil-control-valve. The measurement of air flow provides the ACC system
with the feedback necessary to perform this function.

Feedwater Control System. The function of the feedwater control system is to maintain a
constant water level in the steam drum. The FWC system automatically does this by
(1) measuring the steam drum water level and the feedwater flow rate to the boiler;
(2) comparing the measured water level in the drum to a designed value;
(3) computing the required change, if any, to the rate of feedwater flow; and
(4) correcting the feedwater flow rate as needed.

When the load is steady, the feedwater flow rate into the boiler equals the rate of steam
consumption and the water level in the steam drum is normal. But, when the load changes,
so does the demand for steam. Any change in this demand is detected and the feedwater
flow rate is increased or decreased to equal the steam flow rate out of the boiler. The actual
control of feedwater flow is accomplished by adjusting the air-operated diaphragm of the
feedwater regulator between the feed pump and the boiler.

Makeup and Excess Feed Control System. Operation of a steam-driven povrer plant often
requires the addition or removal of water from the steam cycle. The makeup and excess
feed control system is responsible for doing this and for maintaining a specified level of
feedwater in the deaerating-feed-tank.

Whenever the level in the deaerating-feed-tank deviates from the specified value, water is
either withdrawn from or added to the deaerating-feed-tank. In both cases the process is
facilitated by two standby tanks. The two standby tanks are the atmospheric-drain-tank

and the distillate-tank. When the feedwater level in the deaerating-feed-tank falls below
normal, the makeup-feed-regulator is adjusted by the control system to increase flow from
the standby tanks. Increased flow into the deaerating-feed-tank compensates for the loss
in the feedwater level. Similarly, a deaerating-dump-regulator is activated by the control
system to withdraw excess feedwater from the deaerating-feed-tank when the level in the
tank rises above the normal value.

In addition to the automatic boiler control system, a power plant has several other controls
which are not discussed here because they are not relevant to your task. However,
knowledge concerning some common modes of failure in components of a power plant is
useful for diagnosing faults and is described next.

Common Modes of Failure

A mechanical component in a physical system like the marine power plant can fail in
more than one way. The four most common modes of failure for components of TURBINIA
are: (a) blocked-shut, (b) stuck-open, (¢) leak-in, and (d) leak-out. Faults in components fit
one or more of these four mode types.

A blocked-shut component offers greater than normal resistance to the flow of fluid for the
desired operating condition. A valve that cannot position its vane to a larger opening
demanded by the new operating condition or a strainer that is clogged with dirt are
examples of the blocked-shut mode of failure.

A stuck-open component offers less than normal resistance to the flow of fluid for the
desired operating condition. A valve that refuses to position its vane to a smaller opening
on command is an example of the stuck-open mode of failure.

A component failed in leak-in mode allows undesirable or excess flow of fluid into it,
while a leak-out mode of failure causes undesirable passage of fluid out of the component.
A vacuum tank that allows air to leak in from outside and a ruptured piping that allows the
fluid it carries to leak out from it are examples of leak-in and leak-out modes of failure
respectively.

Each failure mode is responsible for a system behavior that manifests in the form of a
typical pattern of abnormal state values. During diagnostic problem solving, it is often
helpful to identify the failure mode from system behavior and confine the search to
components that fail in the identified mode. The typical system behavior associated with a
fault also depends upon the phase of the fluid in the affected path. The following set of
examples explains the abnormal system behavior for each of the four modes of failure in
liquid and gas paths.

A blocked-shut mode of failure in a liquid path causes the liquid level downstream to be
lower than normal and the level upstream higher than normal. A similar blocked-shut
mode of failure in a gas path, on the other hand, decreases the downstream gas pressure
and increases the upstream pressure.

A stuck-open mode of failure in a liquid path causes the liquid level downstream to be
higher than normal and the level upstream lower than normal. A similar stuck-open
mode of failure in the gas path increases the downstream gas pressure and decreases the
upstream pressure.

When a container that stores liquid allows more of the same liquid to leak in, the level of
the liquid in the container increases. When the same container stores gas and allows
more of it to leak in from the high pressure surroundings, the pressure in the container
becomes abnormally higher.

A ruptured component that allows liquid to leak out causes a drop in the liquid leve!l
upstream as well as downstream from the place of leakage. A similarly ruptured
component carrying gas causes a drop in pressure upstream and downstream from the
place of leakage.

Although there is a typical system behavior associated with each mode of failure, it is not
always easy to observe the abnormal behavior in a real system. This is due to the limited
number of available gauges. Therefore, pressures, temperatures, and flows cannot be
measured across every component. Furthermore, certain components can prevent
propagation of expected abnormal behavior past them. For instance, a source-sink such as
a deaerating-feed-tank located downstream in the blocked-shut condensate path prevents
further propagation of low level downstream from the tank. The deaerating-feed-tank
imposes such a behavior on the system because it is an infinite source of feedwater which
temporarily compensates for any loss of water level. A summary of typical system
behavior associated with the four failure modes is shown in Table 1.

245

Failure Fluid State Abnormal Behavior Propagation Limited By
Mode Upstream Downstream | Upstream Downstream

Infinite Infinite

Liquid Level High Low Sink Source

Blocked-Shut

Gas Pressure High Low Safety Infinite

Valve Source
Infinite Infinite

Liquid Level Low High Source Sink

Stuck-Open

Gas Pressure Low High Infinite Safety

Source Valve
Infinite Infinite

Liquid Level High High Sink Sink

Leak-In

Gas Pressure High High Safety Safety

Valve Valve

Liquid Level Low Low
Leak-Out Infinite Source
Gas Pressure Low Low

Table 1. Typical Abnormal System Behavior

This completes a description of a typical marine power plant, its control systems, the four
common modes of failure in components of the power plant, and the typical abnormal
system behavior associated with each of the four failure modes. The next szction describes
TURBINIA's interface.

The Interface

TURBINIA, the marine power plant simulator has been developed on a dual screen Apple
Macintosh II workstation. The dual screen configuration consists of one 19" color monitor
and a 13" color monitor. In this set up, the larger monitor is the left screen and the smaller
monitor is the right screen. A single button computer mouse that can point to all locations
on both screens is the only input device. You will use this mouse to interact with the direct
manipulation interface of TURBINIA. Almost all your actions involve moving the mouse
cursor to a desired location and clicking on the mouse button. All valid user actions have
appropriate response while invalid actions are ignored by the system. Valid actions at
TURBINIA's interface are described in detail later.

TURBINIA's interface consists of seven schematic windows, a schematic menu, a
requests menu, a symptom disglay dialog, a communication dialog, and several error
dialogs.

The seven schematics display the physical connections between the components of the
power plant. You will use these schematics to investigate components and probe gauges
attached to these components.

The schematic menu displays seven icons each representing one of the seven schematics.
You will use these icons to access the schematics.

The requests menu has three icons. You will use the first icon to request for an opportunity
to diagnose the fault, the second to temporarily halt the simulation and the third to resume
the simulation.

The symptom display dialog shows the initial symptoms observed at the time you begin
your troubleshooting task.

The communication dialog is used as a medium to present textual messages.
The error dialogs convey appropriate messages when you make a mistake.

The display of error dialogs, symptom display dialog, and the text on the communication
dialog is accompanied by a beep to draw your attention to these events.

A more detailed description of the interface and valid forms of your interaction with it
follows. This section will also provide you with a guided tour to your first session with
TURBINIA,

A session with TURBINIA

Welcome to your first session with TURBINIA. You will soon be troubleshooting a
simulated failure in a marine power plant. Your first session will be short containing a
single problem but subsequent sessions will be of 45 minutes each and will require you to
solve three problems. Use the instructions in this section to guide yourself through the first
session. The instructions should help you become familiar with the direct manipulation
interface of TURBINIA.

247

At the beginning of every session, the dual screen Apple Macintosh II workstation displays
two menus on the large screen and two dialog boxes on the small screen. The two menus on
the large screen are the schematic menu and the requests menu. A communications dialog
is displayed on the bottom edge of the small screen and an output file path dialog is
displayed above the communications dialog. This display of the two screens at the start of
every session is also shown in Figure 11. If you are starting your first session now, make
sure that the screens in front of you look like Figure 11.

SU23.10g jo uonerndyuo) ‘1] 8InB1g

U9310G 2319

Ua310s fswg

12010

i

[10-3qn]

Loy,

I7BM-PR3 J

1a[t0g

249

Schematic menu:

The schematic menu on the large screen and also shown in Figure 12, displays seven
icons. Each icon represents one of the seven schematics of the simulated power plant. The
names of the seven schematics are also provided in the textual form above each icon. The
seven schematics are the steam, boiler, feed-water, fuel-oil, control-air, saltwater and
lube-oil. You can access any of the seven schematics by clicking on the icon representing
the schematic.

Menu

Feed-water

T

Fusl-ofl

Figure 12. Schematic Menu

Requests menu:
The requests menu adjacent to the schematic menu displays three icons (Figure 13). The

first is the diagnose icon. You click on diagnose icon when you have sufficient evidence to
confirm your failure hypothesis. By clicking on the diagnose icon, you indicate to

250

TURBINIA your intention to identify the component responsible for the observed abnormal
behavior. You are later provided with an example of how to use the diagnose icon.

The second icon on the requests menu is the stop icon. A click on the stop icon can halt the
simulation. However, not all subjects in this experiment need to stop the simulation. In
fact you are one of those that need not. Therefore, if you click on the stop icon, an error
dialog conveys this message to you.

The third icon on the requests menu is the resume icon. The resume icon is used to restart
simulation after it has been halted. Since you will not be stopping the simulation in your
sessions, the resume icon has been disabled. All disabled iccns in this application have an
inverted-gray or tan colored background as compared to enabled icons that have gray for
their background color.

O
3

Figure 13. Requests Menu

Communication dialog:

There is a computer-based tutor built on top of TURBINIA to assist users to troubleshoot the
power p ant. However, not all subjects in this experiment are aided by the tutor. You belong
to the g -oup that is unaided. Thus, the tutor, in your case, will only process your request for
diagnos.; and inform you if your celection of failed component is correct. This
communication will take place in the communication dialog on the bottom edge of the
small mcnitor (Figure 14). All communications through this dialog box will be
accompanied by a beep.

251

Figure 14. Communication Dialog

Output file path dialog:

Output file path dialog is displayed above the communication dialog on the smaller screen
at the beginning of each new session. This dialog is also shown in Figure 15. Qutput file
path dialog expects you type in a name of the file to store your performance data. You begin
every session by typing in your last name to create this file. As you type in, you should see
the characters appear in the editable text region bounded by a rectangle in the output file
path dialog. When you are done typing in your name, check the spelling. If you have made
a spelling error, use the delete key on your keyboard to crase characters and make the
corrections. When you have your last name spe!t correctly, hit the return key.

S gsteaml

(3 gauge-readings = hardDisk
Y laad.lisp

(O Mac-G6raphics
(3 Mac-Graphics-new

O RERD-ME
(O screens
fs...
vijay (cancel)

Figure 15. Output File Path Dialog

WARNING

Initial Condition: The Ship Is Undervay At Slov Speed Of Twenty
Rpm

Symptoms: When Speeding Up To Full Speed Of Seventy Rpm
The Boiler Level Drops Low.

Figure 16. Symptom Display Dialog

Symptom display dialog:

After you have hit the return key, you should see the symptom display dialog appear with a
beep in the center of the large screen. The symptom display dialog should look like the one
shown in Figure 16. The symptom display dialog shows you the simulated ship's initial
operating condition and the first symptoms that indicate the existence of a problem. For
your first session, TURBINIA has picked a failure that has caused the feedwater level in
the boiler to fall. This information is conveyed to you through the symptom display dialog
currently displayed in front of you on the left screen. Your task is to identify the failed
component responsible for this abnormal system behavior.

Since the time taken to solve problems is also important, each problem in TURBINIA is
simulated for 15 minutes. There is, however, no cascading of tailure in this 15 minute
period. Therefore, your task is confined to identifying a single component responsible for
abnormal system behavior. During the next 15 minutes, you may have to make several
investigations before you can accomplish your task. This guided tour of your first session
will familiarize you with the actions that are necessary to achieve your goal.

You do not have to memorize the ship’s initial operating conditions or the symptoms
displayed in the symptom display dialog because you are provided with the facility to recall
this information. However, remember that the symptom display dialog is a special dialog
used by the application which deactivates your mouse for regions outside the dialog box.
Only when you complete interaction with such a dialog, does the mouse get activated again
for regions outside the dialog box. TURBINIA has several of these special dialogs called
modal dialogs. These dialogs respond with a beep if you click the mouse elsewhere without
first completing the interaction with them. As an example, try clicking the mouse with the
cursor on one of the icons in the schematic menu while the modal symptom display dialog
is still visible on the screen. The normal system response to clicking on a schematic menu
icon is to display the schematic associated with the icon selected. But this response is
currently suppressed by the open modal symptom display dialog. Instead, the system
sounds a "beep” to remind you to first finish interacting with the open modal dialog.

You should click on "OK" button in the symptom display dialog to proceed further.

Clicking on "OK" completes your interaction with the symptom display dialog and the
modal dialog is closed.

Schematics:

Schematics are pictorial representations of the simulated marine power plant. Each
schematic presents a view into the structure of the system. A schematic shows the sequence
in which components and the gauges appear in the system. If you now click on the boiler
icon in the schematic menu, the boiler schematic will be displayed. The boiler schematic
is shown in Figure 17. Although the boiler schematic has been chosen as an example to
explain the various features of the schematic interface, we could as well have selected any
other schematic for this purpose.

oyewayog Iapiog L1 2IndL]

us...._anpjrlllu

weRs-13dn

uluuﬂo__nnumrll—

IauIRY IIRuUre j
_.') 4
IRuIgIadn.
AATRA-

saQu-131100
uﬁﬂuﬁi
T0Q-PpULA;

2
13dmep-1v
pENE B

Euﬂ.—naL

Jjjewayars-a3jioq

All the components in the boiler schematic have been represented by rectangles. The
connections between components are shown by firm lines connecting the components.
These firm lines are known as connectors. The direction of flow of fluid from one
componer:t to another is shown by the arrow head on these connectors. For example, the
economizer and the drum have a two way connection. The connection from the economizer
to the drum represents the flow of feedwater while the connection in the reverse direction
represents the flow of flue-gases.

Some connectors, like the one connecting the feedwater icon to the feedwater-regulator,
have a component on one end and an icon at the other. Such connectors represent
connections between components that are in different schematics. The icon at one end of
such connectors represents the schematic in which the connected component can be viewed.
In this example, the input connector to the feedwater-regulator physically originates from
the hp-heater in the feedwater schematic.

Now click on the feedwater icon at the end of the input connector of feedwater-regulator and
see what happens. You should notice two things. First, the display switches to feedwater
schematic. Second, the boiler icon on output connector from the hp-heater is highlighted
with a red band around it. The highlighted boiler icon helps you establish the physical
connection between the hp-heater and the feedwater-regulator. Click on the highlighted
boiler icon to get back to the boiler schematic. Notice that the boiler schematic now has two
feedwater icons highlighted, one connected to the feedwater-regulator you clicked on
earlier, and the other to the economizer. This simply means that the hp-heater is connected
to both the feedwater-regulator and the economizer in the boiler schematic.

Most components of TURBINIA are uniquely represented in one of the seven schematics.
However, there are a few that have multiple representations. For example, the condenser
and the hp-heater appear in both the steam and the feedwater schematics. Switch to the
steam schematic by selecting the steam icon in the schematic menu and locate the
condenser and the hp-heater. Multiple representation of these components in schematics is
indicated by feedwater icons adjacent to these components. Notice that these icons do not
have a connector attached to them. Click on any one of these two icons and your display
will switch to the feedwater schematic. The rectangular boxes marked condenser and hp-
heater, in this feedwater schematic, are another representation of the same condenser and
hp-heater you saw in the steam schematic.

Troubleshooting for failure indicated by the symptoms at the beginning of the session
involves gathering information about system states. You collect information concerning
system states using a two-action sequence. The first action of the sequence is called the
investigative action. Investigative action enables you to display gauges attached to a
component, if any. The secund action is the informative action that allows you to access the
actual gauge reading. The investigative and the informative actions are now explained
with an example.

In the current session you have been asked to detect the failure responsible for decreasing
water level in the boiler. It is therefore reasonable to investigate components near the
boiler. Click on the boiler icon in the schematic menu to view the portion of the power plant
with abnormal behavior. As a part of the process to confirm the symptom indicated, move
the cursor over the drum and click on it. You have now taken an investigative action and
all gauges attached or relevant to the drum are displayed as a result of this action. This
action also highlights the last investigated component, the drum, in blue.

There are three types of gauges in TURBINIA: pressure, temperature, and flow-or-level
gauges. These three gauges are represented by icons with letters P, T and L inscribed in
them to indicate pressure, temperature, and level respectively. Although there is no visible
distinction between the flow and the level gauges, it may be helpful to remember that level
gauges are attached to tanks such as the deaerating-feed-tank, fuel-oil-settling-tank,
atmospheric-drain-tank, distillate-tank, hotwell, and drum. In fact, in TURBINIA, there
is just one gauge that measures flow and is located in the fuel-oil path across the strainer.

The drum you are investigating has all three types of gauges attached to it. There are two
pressure gauges, one on the flue-gas connector to the economizer and the other on the steam
drum. There is a temperature gauge on the feedwater connector from the economizer and a
level gauge on the steam drum. The pressure gauge on the steam drum measures the
saturated steam pressure in the drum itself and as such is not located over a connector.

To view the reading of a displayed gauge, you have to click on it. This action of probing a
gauge is called an informative action. Select the displayed level gauge on the drum and
click on it. First, the drum is lowlighted in yellow-brown and then an icon appears near
the gauge. This icon is a qualitative representation of the current level. TURBINIA uses
five different qualitative representations of state values. These five are normal, low,

slightly-low, slightly-high and high, each represented by an icon as shown in Figure 18.

low s-low normal s-high - high

Figure 18. Qualitative State Representation

When you click on the level gauge attached to the drum you should see an icon indicating
low level appear at the bottom of the gauge. However, if you see an icon that indicates a
slightly-low or normal reading, do not be alarmed. Remember that TURBINIA starts
simulating the failure condition at the beginning of the session and if the failure is located
far away from the drum, the failure effects will take time to propagate to the drum.
Therefore, the low level symptom at the drum, indicated at the beginning of the session,
may not yet be visible. You will, however, be able to observe a low level reading during the
course of the session.

You should never assume that a gauge reading will be the same at all times after you have
observed it. While the gauge readings may change with time, the displayed gauge
readings are not dynamically updated. Therefore, you must take an informative action
when you need to see the current gauge reading. Thus, if you did not find the drum level
low earlier, keep repeating the informative action of selecting the drum's level gauge and
you will eventually find it to be low.

You can access any displayed gauge or a gauge reading only until the time you take a new
investigative action. Click on the superheater to see what this means. You will discover
that all gauges attached to the drum and the probed gauge readings that were visible
disappear. Instead, two new gauges, one pressure and the other temperature attached to the

257

superheater are now displayed in the superheated steam path. Along with the appearance of
the gauges, the newly investigated superheater is highlighted in blue.

There are certain components that do not have gauges attached to them. The air-damper is
a good example of such a component in the boiler schematic. If you click on the air-damper,
all visible gauges and gauge readings on the schematic disappear. Also, the last
investigated component is lowlighted and the air-damper is highlighted. However, no new
gauges are displayed because there are none attached to the air-damper.

The troubleshooting task typically involves several investigative and informative actions
in one or more schematics. Assume that you have conducted several tests and now you have
enough evidence to support hypothesis about the failure. Your next valid action, under these
circumstances, is to submit a request for conveying the diagnosis. To make this request
you click on the diagnose icon in the requests menu. Go ahead and click on the diagnose
icon to see how TURBINIA prepares itself to accept your diagnosis.

When you click on the diagnose icon, TURBINIA asks you to select the failed component.
This message is conveyed to you through a text appearing in the communications dialog at
the bottom of the small screen. You then select the component that, in your opinion, is
responsible for the abnormal system behavior. Selecting a failed component is an action
identical to investigative action. However, this time, when you click on a component, no
gauges are displayed. Instead, if your diagnosis is correct, a message congratulating you
appears on the communication dialog. Otherwise, an error dialog accompanied by a beep is
displayed over the schematic. This error dialog is shown in Figure 19.

As an example of erroneous diagnose, click on the economizer. The economizer is not the
failed component responsible for the current abnormal system behavior. When you
complete the click, an error dialog appears over the boiler schematic. This error dialog is a
modal dialog. You can close this error dialog by selecting one of the two options available.
If you choose "try again” you remain in the diagnose mode and can revise your diagnosis.
On the other hand, if you choose "investigate”, you are back in the troubleshooting mode
where selecting a component displays the gauges attached to it. Click first on "investigate"
in the error dialog and then on the drum and you will notice that you are out of the diagnose
mode and the four gauges attached to the drum reappear on the screen.

—]

B Sorry, your diagnosis is incorrect. Do you
want to 'y again or investigate further.

Toy hesin
'wind-box

T‘é conomizer
_— I

Figure 19. Incorrect Diagnosis

On all schematics you will observe the presence of two other icons that do not represent a
schematic and have not also been discussed as yet. One icon appears on the right top corner
and the other on the right bottom corner of all schematics. The icon on the right bottom
corner is a Georgia Tech. copyright icon. This icon is disabled and has no response. The
icon at right top corner is a symptom icon and is used to recall the initial symptoms. Click
on this icon and you will see the symptom display dialog reappear. Thus, you can access
the ship's initial operating conditions and the initial symptoms at any time. You can once
again close the modal symptom display dialog by clicking on the "OK" button.

This section has introduced you to all your valid interactions at TURBINIA's interface.
Your valid interactions will be briefly summarized in the next section. Following the
summary is a description of how your performance will be measured.

m f 1 ion
Provided below is a list of actions that you will perform while interacting with TURBINIA.

Call-for-schematic-action: This is an action you perform to call a new schematic or switch
between schematics. There are two ways this may be done. You can either click on an icon
in the schematic menu that represents the schematic you want to view, or, if a schematic is
currently displayed, click on a similar icon in the schematic itself. If you are
investigating components along a suspected path in a schematic that ends up in an icon,
you may prefer to use the icon in the schematic itself to switch to a new schematic. By using
the icon in the schematic, a highlighted icon in the new schematic properly orients you to
continue investigations along the suspected path.

Investigative-action: During your entire period of interaction with TURBINIA, you are
either in troubleshooting or in diagnose mode. When in troubleshooting mode, your action
of clicking on the mouse button with cursor on a selected component constitutes an
investigative-action. You perform investigative-action to view all gauges attached to the
input and output sides of the component being investigated. A new investigative-action
always makes the displayed gauges and the gauge readings of the last investigated
component disappear from the screen. When no gauges are displayed in response to an
investigative-action, it implies that the component investigated has no gauges attached to
it.

Informative-action: The gauges displayed following an investigative-action, when
probed, display the gauge reading. The action of probing displayed gauges by clicking the
mouse on the gauge is called an informative-action.

Diagnose-request-action: This action is performed to switch from the troubleshooting mode
to diagnose mode. You perform this action when you are prepared to indicate your
diagnosis. Clicking on the mouse button after selecting the diagnose icon in the requests
menu constitutes a diagnose-request-action.

Diagnostic-action: Diagnostic-action is performed following the diagnose-request-action.
In diagnostic action you select the component that you suspect is responsible for the
observed abnormal system behavior. In indicating your diagnosis, you select the
component in the same manner as you do when investigating the component. Thus,
diagnostic-action is an investigative-action in diagnose mode.

Modal-dialog-action: Modal dialogs deactivate the mouse in regions outside the dialog
box. Before the mouse button can be reactivated for regions outside the modal dialog box,
you are required to terminate interaction with the modal dialog. Terminating interaction
with a modal dialog requires selecting a button dialog item. The action of selecting the
button dialog item in the displayed modal dialog is called modal-dialog-action. Symptom
display dialog and error dialogs are examples of modal dialog that require modal-dialog-
actions.

M e Troubleshooting Perf TURBINIA

Although your ultimate goal is to identify the failed component responsible for abnormal
system behavior, your performance is affected by other factors. This section will discuss
these factors so that you have a better feel for what is expected of you.

Correct diagnosis: Successful fault diagnosis is the most important measure of your
troubleshooting ability. However, since the problems are tough, your inability to solve
problems has to be evaluated in conjunction with other factors.

Troubleshooting time: The total amount of time taken for troubleshooting is an important
performance measure for those who successfully solve the problem. Those who solve the
problems in less time have a better performance rating.

Number of relevant actions: Even though every informative action has some

informational content, some have more relevance than others for the failure being
investigated. Also, there is a minimum number of relevant informative actions necessary
to diagnose each failure. The number of relevant informative actions past this minimum
number taken to solve a problem is a measure of diagnostic performance. Smaller number
of relevant informative actions required to correctly diagnose the fault implies better
performance.

Number of irrelevant actions: The informative actions that have no relevance to the
current problem are said to ke irrelevant. The larger the number of such irrelevant
informative actions during your troubleshooting exercise, the worse is the diagnostic
performance.

Number of incorrect diagnosis: You are penalized any time you make an incorrect
diagnosis. However, the penalty depends upon the component incorrectly identified as
failed. At any stage during the troubleshooting process there are likely candidates for
failed component based on the observed abnormal system states. The likelihood that a
component may have failed increases or decreases as you conduct more diagnostic tests.
Selecting a likely component as the cause of abnormal system behavior does not penalize
you as much as picking a component that cannot have failed. Therefore, even though your
performance is adversely affected by an incorrect diagnosis, it is considered worse if the
suspected ~nmpnnent cannct have failed based on the symptoms at the time you express the
diagnosis.

Investigation of unaffected schematics: For each failure, there are only few schematics,
subsystems and fluid paths that are affected. Affected schematics are those schematics that
have gauges with abnormal readings. Investigating components in schematics that are
unaffected by the failure reflects the inability on your part to relate the symptoms to the
correct structural location of the power plant. Thus, investigating components in
unaffected schematics reduces your performance rating.

Investigation of unaffected subsystems: Like the schematics, investigating components in
subsystems unaffected by failure reduces your performance rating.

Investigation of unaffected fluid paths: Once again, like the previous two factors,
investigating components in unaffected fluid paths harm your performance.

This manual has guided you through your first session, made you familiar with
TURBINIA's interface, and has described how your performance will be measured during
the experiment. From the next session, you will begin your formal training in
troubleshooting marine power plants.

Since it is vital for my experimental results, you are requested not to discuss any aspect of
this experiment with other subjects.

GOOD LUCK!

OPERATOR INSTRUCTIONS FOR TURBINIA-VYASA (PASSIVE MODE)

TURBINIA-VYASA is an instructional system that trains operators to troubleshoot marine
power plants. TURBINIA is the name of the simulated marine power plant used in the
instructional system and VYASA is the computer-based tutor that teaches the
troubleshooting task using TURBINIA. As a naval trainee, you will be trained to diagnose
some common failures in a marine power plant using this instructional system. This
instructional manual will describe your interaction with both TURBINIA and VYASA
following a brief description of a typical marine power plant and its control system.

Introduction

A marine power plant is a collection of components configured to produce mechanical
work from thermal energy. This energy transformation takes place in components called
the turbines. A ship that uses steam as a medium to carry the thermal energy to the turbines
is said to be steam-driven. In a steam-driven ship the source of thermal energy is usually
fossil or nuclear fuel. This section describes the functioning of a fossil fuel-oil fired,
steam-driven marine power plant.

The process of producing mechanical work in a steam-driven marine power plant can be
decomposed into several stages. Each stage is associated with one of the four phases in the
steam cycle: generation, expansion, condensation and feed.

Steam Generation

Figure 1 shows the configuration of components in the generation phase of the steam cycle.
This phase of the steam cycle takes place in the boiler. The boiler is comprised of tubes and
a steam drum. The boiler tubes conitain water that is heated by flue-gases resulting from
the fuel burned in the furnace. This heat transfer is by conduction through the tube walls.
Heating of water in the tubes produces steam. This steam accumulates over the water
surface in the steam drum and is called saturated steam. Saturated steam is sometimes
also referred to as wet steam because of its moisture content.

Continuous steam generation in the boiler increases the steam pressure in the drum.
Boilers are rated by the steam pressure they can handle in the drum. In a 1200-psig boiler,
for example, the maximum steam pressure permitted is 1200-psig. A safety valve is
activated to release pressure whenever it exceeds the maximum value.

Feed Feedwater
g
g
]
-]
-]
=
vvvv
PAF AV AV A VY S A AP A B B B VAN A A A A AN S B B B B 3 NV N
PR AR A A 4 PP A A A B
VAR A A A A 4 ' Drum vl 7 7 7 4
F A T A A ol e . TR A P A
T ax and e s 2 2y 2 2 2 4
IIIS P A T N S A a4 P A A ARV S IV Y S B & " B 3 & &
AR a4 [3 PR AW A A A I A S 3 F AN B A S B B B B B A "B 3 SV A
/I/; P A BV A A A B 3 F A B B Sy I X A A A 3 "B SR Y A
III’S PV IR AV I S B B B 3 VD B B B B A A v av e ' P,
PV AV -V 7z 7 {l/IIIIIIIIIIII/IE /7 A
s =}y, T, .l @ L
/1///;’-:-. :/Ifg 7 4
IIIIIIIIr::' . ":/lfm 7 4
IIIIIIII’T’777';;//;;/;//I/ s A
IIIIIIIIII’III‘IIII’IIII/Illd
Kl T A A A AV A A S VA A S A B B B I A 3 "W B BV A
BOH‘ER P 2 I AV IV AV P & VAV S B B B B B B & 3 "3 B SV B
Power Superheated s —
. — Superheater
Generation steam
Flue#gas
<l“uel-air mixture
Furnace

Figure 1. Steam Generation

The steam pressure in the drum controls the temperature at which the water boils in the
drum. Since the temperature of saturated steam accumulating above the water surface is
the same as the temperature of the water, the saturated steam temperature depends upon the
steam pressure. This temperature at which the water and saturated steam coexist in the
drum is called the saturation temperature. The highest possible saturation temperature is
attained in a boiler when the boiler operates at its maximum rated pressure. Since the
thermal energy of steam in the drum is proportional to its saturation temperature, the heat
content of the saturated steam is maximum at the highest boiler operating pressure.

Even though the boilers are designed for high operating pressures, the saturated steam does
not contain enough thermal energy to operate the turbines at their best efficiency. Thermal
energy of steam is increased by passing it through tubes in the section of the boiler closest to
the furnace. This section of the boiler is commonly known as the superheater. The

superheater is responsible for adding heat to saturated steam at constant pressure. The heat
added to saturated steam in the superheater is called sensible heat. Sensible heat increases

the temperature of the steam “eyond the saturation temperature and makes it drier. The
steam from the superheater is called superheated steam and the increase in steam
temperature in the superheater measures the degree of superheat.

Steam Generation

Superheated steam

—P» Throttle

Hp-Turbine

*/

Astern- Lp-Turbine

Turbine \
v

v

Steam Condensation

Figure 2. Steam Expansion

Steam Expansion

The second phase of the steam cycle takes place in two steps. First, the superheated steam
from the boiler expands in a high pressure turbine to convert thermal energy to mechanical
work. Then, since the steam still contains a considerable amount of thermal energy, it is
expanded further in a low pressure turbine connected to the exhaust of the high pressure
turbine. Figure 2 shows the arrangement of low and high pressure turbines in a power

plant.

Steam Expansion

Saltwater
Condenser l
* Scoop € sc <— Sea
Hotwell 53- Valve 00p
]
: v
-
& Se
Discharge Main (g a
Condensate Valve Circulaton Strainer
Pump
Cpd-Valve Gland|Steam

Condensate o {Gland-Exhaust First-Stage
————P» Condenser —P Heatte?'g

' Deaerating
Atmospheric Feed
Drain-Tank Tank
Feed

Figure 3. Steam Condensation

Steam Condensation

After expansion, the third phase of the steam cycle is steam condensation which takes place
in the main condenser (Figure 3). The condenser is a sealed container with tubes that
carry cold sea water. When the steam passes over these tubes it loses latent heat to the cold
water. When sufficient latent heat is withdrawn from the steam, it changes phase and
turns back into water, called condensate.

Steam pressure at the turbine exit is low and steam can flow into the main condenser only
if the pressure in the condenser is lower. Since the condensate occupies less volume than
the same amount of steam and because the condenser is a sealed container, condensation
creates a vacuum in the condenser shell. This vacuum in the condenser shell helps
maintain a continuous flow of steam from the turbines to the condenser.

As the steam from the turbines turns into condensate, it flows into a collecting tank called
the hotwell. The condensate-pump then pumps the condensate to the deaerating-feed-tank
via the gland-exhaust-condenser. In the gland-exhaust-condenser, the condensate from
hotwell serves as the cooling medium to condense steam from the turbine glands. While
the condensate from the gland-exhaust-condenser flows to the deaerating-feed-tank, the
condensed gland steam is returned to the condensate system by way of atmospheric-drain-
tank.

Feed

Feed, the last phase of the steam cycle, begins at the deaerating-feed-tank. The deaerating-
feed-tank is a storage tank for feedwater. It also contains apparatus to remove dissolved
oxygen entrained in the condensate. The other major components in the feed phase are the
main feed pump, the feed water regulator and the economizer. These components are
shown in Figure 4. The main feed pump is responsible for pumping water to the boiler. The
feed water regulator regulates feedwater into the economizer enroute to the boiler. The
economizer is a heat exchanger that preheats the feedwater.

Each of the four phases of the steam cycle perform an important system function. The
collection of components responsible for the function constitute a functional subsystem.
Thus, steam generation, steam expansion or power generation, steam condensation, and
feedwater preheating are also essential subsystems of a marine power plant. In addition, a
power plant typically has subsystems that perform other functions necessary for its
operation. Combustion, auxiliary steam use, control air, lube oil, and saltwater service are
examples of such subsystems.

Steam Condensation

|
y

Deaerating
Feed
Tank

Feed-Pump P };e:gdu‘;'::::

Economizer

v

Steam Generation

Figure 4. Feed

Combustion involves burning the fuel-air mixture prepared in the burner. The thermal
energy released during combustion is used to heat water in the boiler. The components that
make up the combustion subsystem are shown in Figure 5. These components lie along two
fluid paths: combustion air and fuel-oil.

Combustion air is supplied to the burner by a forced draft fan operated by either a steam
turbine or an electric motor. Fuel-oil is supplied to the burner by pumping fuel from a
settling-tank. For proper combustion, both the combustion air and the fuel-oil need to be at
the proper pressure and temperature. Furthermore, for complete combustion the mass of air
required is fourteen times the mass of fuel-oil.

Atmosphere
Forced-Draft
Fan
Air-Heater
Wind-Box
* Fuel-oil Heater
Air-Register % 4
Fuel-oil Fuel-Pump
Control .
Valve -« Strainen *
Steam Fuel-oil g::ll:oil
; Master ttling
Gemratx:;l‘—n Burner j— Valve Tank

Figure 5. Combustion Subsystem

Incorrect quantity or improper heating of either the combustion air or fuel-oil causes
combustion problems. Inadequate quantity or insufficient heating of combustion air and
excessive flow of fuel-oil or insufficient heating of it causes incomplete combustion.
Incomplete combustion causes dark smoke in the boilers. On the other hand, excess
quantity of combustion air in the fuel-air mixture either due to increased flow rate of air or
reduced flow rate of fuel-oil extinguishes the flame in the furnace. Excessive preheating of
either the combustion air or the fuel-oil causes yet another combustion problem called
preignition. In preignition, the fuel starts to burn before it reaches the burner.

The auxiliary steam use subsystem shown in Figure 6 uses desuperheated steam for
various purposes. Desuperheated steam, unlike the superheated steam, is low pressure
steam. Desuperheated steam is obtained by passing superheated steam through the
desuperheater. Low pressure desuperheated steam is used (1) by the auxiliary power units

to run equipment such as the feedwater-pump, fuel-pump, saltwater-service-pump and the
forced-draft -fan; (2) to preheat the fuel-oil and the feedwater in the deaerating-feed-tank;
and (3) by the the gland seals to prevent leakage of air into the turbine casings and steam
leakage out of the casings.

Feedwater
Preheating <§— Hp-Reducing-Station [———
Subsystem

(to preheat feedwater)

Cos mm} I n Lp-Reducing-Station jemem——

(to preheat fuel-oil)

(to turbine gland seals) «§ Desuperheater
Combustion Atomizing-Steam
Subsystem @ Reducing-Station <
(to atomize steam) Steam Generation
Subeystem

Feedwater
Preheating «@§—{ Feed-Pump-Turbine je———
Subsystem

(to operate feed-pump)

Figure 6. Auxiliary Steam Use Subsystem

The control air subsystem is responsible for distributing control air to many valves and
regulators. These valves and regulators are operated by the control air. Figure 7 shows the
components that constitute the control air subsystem of a marine power plant.

The lubrication subsystem has the primary purpose of lubricating moving parts and
removing the heat produced by friction. The subsystem consists of a pump that draws lube-
oil from the oil-sump and distributes it to those components that need lubrication. Figure 8
shows the components in the lubrication subsystem.

Atmosphere

'

Compressor Air-Cooler
A
Auxiliary Steam Use
Air-Receiver Subeystem
Pressure-Switch| ’< Air-Dryer
Combust
Subsystem
Feedwater Preheating
Subsystem

Figure 7. Control Air Subsystem

R

Dehumidifier
Turbine
* Gears Bearings

Lube-0il
Cooler

f

Lube-Oil Thrust
Pump Block Air

1 § oy [l

Lube-Oil-Samp ——

Figure 8. Lubrication Subsystem

The saltwater service subsystem distributes the cold sea water to remove heat from units
dissipating heat. Figure 9 shows sections of the power plant cooled by the saltwater.

270

r’ Air-conditioning -,

Unit

P Turbogenerator —Jp»

Saltwater Unit
Service
Pump P Diesel-generator —j
? Unit
Saltwater L> Lube-oil Cooling =
Strainer Unit ¢
Sea Sea

Figure 9. Saltwater Service Subsystem

Combustion Steam Generation| Power Generation
Subsystem > Subsystem Subsystem

A

Auxiliary Steam Use
Subsystem

Y

Feedwater Preheating Steam Condensation
Subsystem — Subsystem

Figure 10. Interacting Subsystems of Marine Power Plant

This section described the decomposition of a marine power plant into nine functional
subsystems. It also described the role each subsystem plays in achieving the overall goal of
producing power. The interaction between the subsystems to produce power is summarized
in Figure 10. For constant power supply, the operating conditions for these subsystems can
be set to safely meet the demand. However, the demand for power in a ship is never
constant but varies with load. Control systems manage the power plant so that it can satisfy
the changes in the demand for power due to fluctuating load. The boiler control system is
the most important among all control systems in a marine power plant. The boiler control
system of most modern Navy vessels is sophisticated and needs minimum human
intervention. Some components of the automatic boiler control system (ABC) are described
next.

Automatic Boiler Control System

Navy vessels typically have the following three ABC systems: automatic combustion
control (ACC), feedwater control (FWC), and makeup and excess feed control systems.
These control systems perform the functions of measuring, comparing, computing and
correcting. In each control system, a state value of interest is measured; compared to a
desired value; a new operating condition, if necessary, is computed; and finally a
correction made in the operating conditions to reduce the deviation between the measured
and the desired value of the state.

Automatic Combustion Control System. The function of the automatic combustion control
system is to maintain the boiler drum pressure at a constant value during steady and
changing load conditions. The ACC system accomplishes this task by

(1) constantly measuring the steam drum pressure and combustion air flow;

(2) comparing the steam drum pressure to the specified designed value;

(3) computing the amount of change, if any, in the furnace combustion; and

(4) correcting furnace combustion as needed.

When the steam demand on the boiler is increased, the steam drum pressure decreases
because the rate of steam withdrawal from the drum becomes greater than the rate of steam
production in the boiler. This pressure drop is sensed by the ACC system and an increase
in furnace combustion is computed to meet the increase in the demand for steam.
Computing the increase in furnace combustion involves computing the increase in the
supply of combustion air and a proportionate increase in the supply of fuel-oil to assure
complete combustion. The ACC system controls the combustion air flow by regulating the
supply of steam to the forced draft fan turbine and controls the fuel-oil flow by positioning
the main-fuel-oil-control-valve. The measurement of air flow provides the ACC system
with the feedback necessary to perform this function.

Feedwater Control System. The function of the feedwater control system is to maintain a
constant water level in the steam drum. The FWC system automatically does this by
(1) measuring the steam drum water level and the feedwater flow rate to the boiler;
(2) comparing the measured water level in the drum to a designed value;
(3) computing the required change, if any, to the rate of feedwater flow; and
(4) correcting the feedwater flow rate as needed.

When the load is steady, the feedwater flow rate into the boiler equals the rate of steam
consumption and the water level in the steam drum is normal. But, when the load changes,
so does the demand for steam. Any change in this demand is detected and the feedwater
flow rate is increased or decreased to equal the steam flow rate out of the boiler. The actual
control of feedwater flow is accomplished by adjusting the air-operated diaphragm of the
feedwater regulator between the feed pump and the boiler.

Makeup and Excess Feed Control System. Operaticn of a steam-driven power plant often
requires the addition or removal of water from the steam cycle. The makeup and excess
feed control system is responsible for doing this and for maintaining a specified level of
feedwater in the deaerating-feed-tank.

Whenever the level in the deaerating-feed-tank deviates from the specified value, water is
either withdrawn from or added to the deaerating-feed-tank. In both cases the process is
facilitated by two standby tanks. The two standby tanks are the atmospheric-drain-tank

and the distillate-tank. When the feedwater level in the deaerating-feed-tank falls below
normal, the makeup-feed-regulator is adjusted by the control system to increase flow from
the standby tanks. Increased flow into the deaerating-feed-tank compensates for the loss
in the feedwater level. Similarly, a deaerating-dump-regulator is activated by the control
system to withdraw excess feedwater from the deaerating-feed-tank when the level in the
tank rises above the normal value.

In addition to the automatic boiler control system, a power plant has several other controls
which are not discussed here because they are not relevant to your task. However,
knowledge concerniig some common modes of failure in components of a power plant is
useful for diagnosing fauits and is described next.

273

Common Modes of Failure

A mechanical component in a physical system like the marine power plant can fail in
more than one way. The four most common modes of failure for components of TURBINIA
are: (a) blocked-shut, (b) stuck-open, (¢) leak-in, and (d) leak-out. Faults in components fit
one or more of these four mode types.

A blocked-shut component offers greater than normal resistance to the flow of fluid for the
desired operating condition. A valve that cannot position its vane to a larger opening
demanded by the new operating condition or a strainer that is clogged with dirt are
examples of the blocked-shut mode of failure.

A stuck-open component offers less than normal resistance to the flow of fluid for the
desired operating condition. A valve that refuses to position its vane to a smaller opening
on command is an example of the stuck-open mode of failure.

A component failed in leak-in mode allows undesirable or excess flow of fluid into it,
while a leak-out mode of failure causes undesirable passage of fluid out of the component.
A vacuum tank that allows air to leak in from outside and a ruptured piping that allows the
fluid it carries to leak out from it are examples of leak-in and leak-out modes of failure
respectively.

Each failure mode is responsible for a system behavior that manifests in the form of a
typical pattern of abnormal state values. During diagnostic problem solving, it is often
helpful to identify the failure mode from system behavior and confine the search to
components that fail in the identified mode. The typical system behavior associated with a
fault also depends upon the phase of the fluid in the affected path. The following set of
examples explains the abnormal system behavior for each of the four modes of failure in
liquid and gas paths.

A blocked-shut mode of failure in a liquid path causes the liquid level downstream to be
lower than normal and the level upstream higher than normal. A similar blocked-shut
mode of failure in a gas path, on the other hand, decreases the downstream gas pressure
and increases the upstream pressure.

A stuck-open mode of failure in a liquid path causes the liquid level downstream to be
higher than normal and the level upstream lower than normal. A similar stuck-open
mode of failure in the gas path increases the downstream gas pressure and decreases the
upstream pressure.

When a container that stores liquid allows more of the same liquid to leak in, the level of
the liquid in the container increases. When the same container stores gas and allows
more of it to leak in from the high pressure surroundings, the pressure in the container
becomes abnormally higher.

A ruptured component that allows liquid to leak out causes a drop in the liquid leve!l
upstream as well as downstream from the plare of leakage. A similarly ruptured
component carrying gas causes a drop in pressure upstream and downstream from the
place of leakage.

274

Although there is a typical system behavior associated with each mode of failure, it is not
always easy to observe the abnormal behavior in a real system. This is due to the limited
number of available gauges. Therefore, pressures, temperatures, and flows cannot be
measured across every component. Furthermore, certain components can prevent
propagation of expected abnormal behavior past them. For instance, a source-sink such as
a deaerating-feed-tank located downstream in the blocked-shut condensate path prevents
further propagation of low level downstream from the tank. The deaerating-feed-tank
imposes such a behavior on the system because it is an infinite source of feedwater which
temporarily compensates for any loss of water level. A summary of typical system
behavior associated with the four failure modes is shown in Table 1.

275

Failure Fluid State Abnormal Behavior Propagation Limited By
Mode Upstream Downstream | Upstream Downstream

Infinite Infinite

Liquid Level High Low Sink Source

Blocked-Shut

Gas Pressure High Low Safety Infinite

Valve Source
Infinite Infinite

Liquid Level Low High Source Sink

Stuck-Open

Gas Pressure Low High Infinite Safety

Source Valve
Infinite Infinite

Liquid Level High High Sink Sink

Leak-In

Gas Pressure High High Safety Safety

Valve Valve

Liquid Level Low Low
Leak-Out Infinite Source
Gas Pressure Low Low

“Table 1. Typical Abnormal System Behavior

This completes a description of a typical marine power plant, its control systems, the four
common modes of failure in components of the power plant, and the typical abnormal
system behavior associated with each of the four failure modes. The next section describes

TURBINIA's

interface.

276

The Interface

TURBINIA- the marine power plant simulator, and VYASA- the computer-based tutor have
been developed on a dual screen Apple Macintosh II workstation. The dual screen
configuration consists of one 19" color monitor and a 13" color monitor. In this set up, the
larger monitor is the left screen and the smaller monitor is the right screen. A single
button computer mouse that can point to all locations on both screens is the only input
device. You will use this mouse to interact with the direct manipulation interface of both
TURBINIA and VYASA. Almost all your actions involve moving the mouse cursor to a
desired location and clicking on the mouse button. All valid user actions have appropriate
response while invalid actions are ignored by the system. Valid actions at the joint
TURBINIA-VYASA interface are described in detail later.

The interface to TURBINIA-VYASA consists of seven schematic windows, a schematic
menu, a requests menu, a communication dialog, multiple levels of hierarchically
organized passive tutor dialogs, a symptom display dialog and several error dialogs.

The seven schematics display the physical connections between the components of the
power plant. You will use these schematics to investigate components and probe gauges
attached to these components.

The schematic menu displays seven icons each representing one of the seven schematics.
You will use these icons to access the schematics.

The requests menu has three icons. You will use the first icon to request for an opportunity
to diagnose the fault, the second to temporarily halt the simulation and the third to resume
the simulation.

The communication dialog is used by VYASA to provide instructions.

The passive tutor dialogs establish your communications with VYASA when you seek
knowledge concerning the structure, function and behavior of the subsystems anc the

components. You will use the passive tutor dialogs to explore the tutor's knowledge-base.

The symptom display dialog shows the initial symptoms observed at the tir . you begin
your troubleshooting task.

The error dialogs convey appropriate messages when you make a mistake.

The display of error dialogs, symptom display dialog, or new texi on the communication
dialog is accompanied by a beep.

A more detailed description of the interface and valid forms of your interaction with the

system follows. You will now be given a guided tour of ; our first session with the
instructional system.

\ . th TURBINIA-VYASA

Welcome to your first session with TURBINIA-VYASA. You will soon be troubleshooting a
simulated failure in a marine power plant. You will be aided in your task by the computer-

based tutor VYASA. This computer-based tutor functions in two modes: passive and active.
For your training sessions, the tutor will function in only the passive mode. In the passive
mode, the tutor will respond to your queries but will not intervene on its own to provide you
with instructions. Your first session has been designed to make you familiar with the joint
interface of TURBINIA and VYASA. This first session will be short containing a single
problem. Suhsequent sessions will be of 45 minutes each and will require you to solve three
problems. Use the instructions in this section to guide yourself through the first session.

At the beginning of every session, the dual screen Apple Macintosh I workstation displays
two menus on the large screen and two dialog boxes on the small screen. The two menus on
the large screen are the schematic menu and the requests menu. A communications dialog
is displayed on the bottom edge of the small screen and an output file path dialog is
displayed above the communications dialog. This display of the two screens at the start of
every session is also shown in Figure 11. If you are starting your first session now, make
sure that the screens in front of you look like Figure 11.

278

SU33.12g Jo uopeIndyuo) ‘11 a1ndi g

uRI0g 9319 ————
: [to-3qn]

33105 [[8Wg 1o01D \%

-

o],

Schematic menu:

The schematic menu on the large screen and also shown in Figure 12, displays seven
icons. Each icon represents one of the seven schematics of the simulated power plant. The
names of the seven schematics are also provided in the textual form above each icon. The
seven schematics are the steam, boiler, feed-water, fuel-oil, control-air, saltwater and
lube-oil. You can access any of the seven schematics by clicking on the icon representing
the schematic.

Menu

=
&

Foed-watker

Ly

Fusl-oil

ra wy

.

Coatrol-air

%) -::
-
Saltwawer

Gl

Lube-ofl

S

Figure 12. Schematic Menu

Requests menu:

The requests menu adjacent to the schematic menu displays three icons (Figure 13). The
first is the diagnose icon. You click on diagnose icon when you have sufficient evidence to
confirm your failure hypothesis. By clicking on the diagnose icon, you indicate to the
instructional system your intention to identify the component responsible for the observed

280

abnormal behavior. You are later provided with an example of how to use the diagnose
icon.

The second icon on the requests menu is the stop icon. A click on the stop icon ¢an halt the
simulation putting you in a mode to interact with the passive tutor. Your interaction with
the passive tutor is later described in detail.

The third icon on the requests menu is the resume icon. The resume icon is used to restart
simulation after it has been halted to communicate with the passive tutor. Since you are
currently not interacting with the passive tutor, the resume icon is shown disabled. All
disabled icons in this application have an inverted-gray or tan colored background as
compared to enabled icons that are shown in gray.

Requests

4

3

Figure 13. Requests Menu

Communication dialog:

The computer-based tutor VYASA communicates with you through textual messages and
instructions presented on the communication dialog. This communication dialog is
displayed on the bottom edge of the small monitor (Figure 14). All communications
through this dialog box are accompanied by a beep.

Figure 14. Communication Dialog

Output file path dialog:

Output file path dialog is displayed above the communication dialog on the small screen at
the beginning of each new session. This dialog is also shown in Figure 15. Output file path
dialog expects you type in a name of the file to store your performance data. You begin
every session by typing in your last name to create this file. As you type in, you should see
the characters appear in the editable text region bounded by a rectangle in the output file
path dialog. When you are done typing in your name, check the spelling. If you have made
a spelling error, use the delete key on your keyboard to erase characters and make the
corrections. When you have your last name spelt correctly, hit the return key.

S qsteaml

> hardDisk

(O gauge-readings
Y laad.lisp
O Mac-Graphics

{ I

(O Mac-6raphics-new

S RERT
(O screens

fs...
vijay (Cancel)

Figure 15. Output File Path Dialog

WARNING

Initial Condition: The Ship Is Undervay At Slov Speed Of Twventy
Rpm

Symptoms: When Speeding Up To Full Speed Of Seventy Rpm
The Boiler Level Drops Lovw.

Figure 16. Symptom Display Dialog

Symptom display dialog:

After you have hit the return key, you should see the symptom display dialog appear with a
beep in the center of the large screen. The symptom display dialog should look like the one
shown in Figure 16. The symptom display dialog shows you the simulated ship's initial
operating condition and the first symptoms that indicate the existence of a problem. For
this first session, VYASA has picked a failure that has caused the feedwater level in the
boiler to fall. This information is conveyed to you through the symptom display dialog
currently displayed in front of you on the left screen. Your task is to identify the failed
component responsible for this abnormal system behavior.

Since the time taken to solve problems is also important, each problem is simulated for 15
minutes. There is, however, no cascading of failure in this 15 minute period. Therefore,
your task is confined to identifying a single component responsible for abnormal system
behavior. During the next 15 minutes, you may have to make several investigations before
you can accomplish your task. This guided tour of your first session will familiarize you
with the actions that are necessary to achieve your goal.

You do not have to memorize the ship's initial operating conditions or the symptoms
displayed in the symptom display dialog because you are provided with the facility to recall
this information. However, remember that the symptom display dialog is a special dialog
used by the application which deactivates your mouse for regions outside the dialog box.
Only when you compiate interaction with such a dialog, does the mouse get activated again
for regions outside the dialog box. This instructional system has several of these special
dialogs called the modal dialogs. These dialogs respond with a beep if you click the mouse
elsewhere without first completing the interaction with them. As an example, try clicking
the mouse with the cursor on one of the icons in the schematic menu while the modal
symptom display dialog is still visible on the screen. The normal system response to
clicking on a schematic menu icon is to display the schematic associated with the icon
selected. But this response is currently suppressed by the open modal symptom display
dialog. Instead, the system sounds a "beep” to remind you to first finish interacting with
the open modal dialog.

You should click on "OK" button in the symptom display dialog to proceed further.
Clicking on "OK" completes your interaction with the symptom display dialog and the
modal dialog is closed.

Schematics:

Schematics are pictorial representations of the simulated marine power plant. Each
schematic presents a view into the structure of the system. A schematic shows the sequence
in which componerts and the gauges appear in the system. If you now click on the boiler
icon in the schematic menu, the boiler schematic will be displayed. The boiler schematic
is shown in Figure 17. Although the boiler schematic has been chosen as an e .mple to

dQewaydg I9iog "L1 aIndig

IJam JzvuIn

o | S—

Ineagradn
JATHA-

saqm -unmoLAI

10wradmazye

IaBn-uo.—-Ml >

1avaqaducapy

[
l

15132111

¥
E
g
5

T0Q - PULA Ly

—’ uuum._nEL

ewayas-iapoq

explain the various features of the schematic interface, we could as well have selected any
other schematic for this purpose.

All the components in the boiler schematic have been represented by rectangles. The
connections between components are shown by firm lines connecting the components.
These firm lines are known as connectors. The direction of flow of fluid from one
component to another is shown by the arrow head on these connectors. For example, the
economizer and the drum have a two way connection. The connection from the economizer
to the drum represents the flow of feedwater while the connection in the reverse direction
represents the flow of flue-gases.

Some connectors, like the one connecting the feedwater icon to the feedwater-regulator,
have a component on one end anu an icon at the other. Such connectors represent
connections between components that are in different schematics. The icon at one end of
such connectors represents the schematic in which the connected component can be viewed.
In this example, the input connector to the feedwater-regulator physically originates from
the hp-heater in the feedwater schematic.

Now click on the feedwater icon at the end of the input connector of feedwater-regulator and
see what happens. You should notice two things. First, the display switches to feedwater
schematic. Second, the boiler icon on output connector from the hp-heater is highlighted
with a red band around it. The highlighted boiler icon helps you establish the physical
connection between the hp-heater and the feedwater-regulator. Click on the highlighted
boiler icon to get back to the boiler schematic. Notice that the boiler schematic now has two
feedwater icons highlighted, one connected to the feedwater-regulator you clicked on
earlier, and the other to the economizer. This simply means that the hp-heater is connected
to both the feedwater-regulator and the economizer in the boiler schematic.

Most components of TURBINIA are uniquely represented in one of the seven schematics.
However, there are a few that have multiple representations. For example, the condenser
and the hp-heater appear in both the steam and the feedwater schematics. Switch to the
steam schematic by selecting the steam icon in the schematic menu and locate the
condenser and the hp-heater. Multiple representation of these components in schematics is
indicated by feedwater icons adjacent to these components. Notice that these icons do not
have a connector attached to them. Click on any one of these two icons and your display
will switch to the feedwater schematic. The rectangular boxes marked condenser and hp-
heater, in this feedwater schematic, are another representation of the same condenser and
hp-heater you saw in the steam schematic.

Troubleshooting for failure indicated by the symptoms at the beginning of the session
involves gathering information about system states. You collect information concerning
system states using a two-action sequence. The first action of the sequence is called the
investigative action. Invcstigative action enables you to display gauges attached to a
component, if any. The second action is the informative action that allows you to access the
actual gauge reading. The investigative and the informative actions are now explained
with an example.

In the current session you have been asked to detect the failure responsible for decreasing
water level in the boiler. It is therefore reasonable to investigate components near the
boiler. Click on the boiler icon in the schematic menu to view the portion of the power plant
with abnormal behavior. As a part of the process to confirm the symptom indicated, move
the cursor over the drum and click on it. You have now taken an investigative action and
all gauges attached or relevant to the drum are displayed as a result of this action. This
action also highlights the last investigated component, the drum, in blue.

286

There are three types of gauges in TURBINIA: pressure, temperature, and flow-or-level
gauges. These three gauges are represented by icons with letters P, T and L inscribed in
them to indicate pressure, temperature, and level respectively. Although there is no visible
distinction between the flow and the level gauges, it may be helpful to remember that level
gauges are attached to tanks such as the deaerating-feed-tank, fuel-oil-settling-tank,
atmospheric-drain-tank, distillate-tank, hotwell, and drum. Furthermore, there is just
one gauge that measures flow and is located in the fuel-oil path across the strainer.

The drum you are investigating has all three types of gauges attached to it. There are two
pressure gauges, one on the flue-gas connector to the economizer and the other on the steam
drum. There is a temperature gauge on the feedwater connector from the economizer and a
level gauge on the steam drum. The pressure gauge on the steam drum measures the
saturated steam pressure in the drum itself and as such is not located over a connector.

To view the reading of a displayed gauge, you have to click on it. This action of probing a
gauge is called an informative action. Select the displayed level gauge on the drum and
click on it. First, the drum is lowlighted in yellow-brown and then an icon appears near
the gauge. This icon is a qualitative representation of the current level. TURBINIA uses
five different qualitative representations of state values. These five are normal, low,

slightly-low, slightly-high and high, each represented by an icon as shown in Figure 18.

low s-low normal s-high - high

Figure 18. Qualitative State Representation

When you click on the level gauge attached to the drum you should see an icon indicating
low level appear at the bottom of the gauge. However, if you see an icon that indicates a
slightly-low or normal reading, do not be alarmed. Remember that TURBINIA starts
simulating the failure condition at the beginning of the session and if the failure is located
far away from the drum, the failure effects will take time to propagate to the drum.
Therefore, the low level symptom at the drum, indicated at the beginning of the session,
may not yet be visible. You will, however, be able to observe a low level reading during the
course of the session.

You should never assume that a gauge reading will be the same at all times after you have
observed it. While the gauge readings may change with time, the displayed gauge
readings are not dynamically updated. Therefore, you must take an informative action
when you need to see the current gauge reading. Thus, if you did not find the drum level
low earlier, keep repeating the informative action of selecting the drum's level gauge and
you will eventually find it to be low.

You can access any displayed gauge or a gauge reading only until the time you take a new
investigative action. Click on the superheater to see what this means. You will discover
that all gauges attached to the drum and the probed gauge readings that were visible

disappear. Instead, two new gauges, one pressure and the other temperature attached to the
superheater are now displayed in the superheated steam path. Along with the appearance of
the gauges, the newly investigated superheater is highlighted in blue.

There are certain components that do not have gauges attached to them. The air-damper is
a good example of such a component in the boiler schematic. If you click on the air-damper,
all visible gauges and gauge readings on the schematic disappear. Also, the last
investigated component is lowlighted and the air-damper is highlighted. However, no new
gauges are displayed because there are none attached to the air-damper.

The troubleshooting task typically involves several investigative and informative actions
in one or more schematics. Assume that you have conducted several tests and now you have
enough evidence to support hypothesis about the failure. Your next valid action, under these
circumstances, is to submit a request for conveying the diagnosis. To make this request
you click on the diagnose icon in the requests menu. Go ahead and click on the diagnose
icon to see how VYASA prepares to accept your diagnosis.

When you click on the diagnose icon, VYASA asks you to select the failed component. This
message is conveyed to you through a text appearing in the communications dialog at the
bottom of the small screen. You then select the component that, in your opinion, is
responsible for the abnormal system behavior. Selecting a failed component is an action
identical to investigative action. However, this time, when you click on a component, no
gauges are displayed. Instead, if your diagnosis is correct, a message congratulating you
appears on the communication dialog. Otherwise, an error dialog accompanied by a beep is
displayed over the schematic. This error dialog is shown in Figure 19.

As an example of erroneous diagnose, click on the economizer. The economizer is not the
failed component responsible for the current abnormal system behavior. When you
complete the click, an error dialog appears over the boiler schematic. This error dialog is a
modal dialog. You can close this error dialog by selecting one of the two options available.
If you choose "try again” you remain in the diagnose mode and can revise your diagnosis.
On the other hand, if you choose "investigate", you are back in the troubleshooting mode
where selecting a component displays the gauges attached to it. Click first on "investigate”
in the error dialog and then on the drum and you will notice that you are out of the diagnose
mode and the four gauges attached to the drum reappear on the screen.

——

B Sorry, your diagnosis is incorrect. Do you
want t0 Uy again or investigate further.

Toy Agun

ﬁ'@ conomizer
x]

'wind-box

Figure 19. Incorrect Diagnosis

On all schematics you will observe the presence of two other icons that do not represent a
schematic and have not also been discussed as yet. One icon appears on the right top corner
and the other on the right bottom corner of all schematics. The icon on the right bottom
corner is a Georgia Tech. copyright icon. This icon is disabled and has no response. The
icon at right top corner is a symptom icon and is used to recall the initial symptoms. Click
on this icon and you will see the symptom display dialog reappear. Thus, you can access
the ship's initial operating conditions and the initial symptoms at any time. You can once
again close the modal symptom display dialog by clicking on the "OK" button.

In this session you have not yet had the opportunity to interact with VYASA- your computer-
based tutor. VYASA is capable of functioning in a passive and an active mode, but for your
sessions it will only function in the passive mode. You will now explore and experience the
capabilities of VYASA in the passive mode.

VYASA in Passive Mode:

Click on the stop icon in the requests menu to halt the simulation and invoke VYASA in
passive mode. Notice how the stop and the resume icons change their background colors.
The stop icon background changes to tan indicating that it has been disabled. At the same
time, the background of resume icon turns gray indicating that it has been enabled. Also
notice that the cursor changes shape and turns into a "?". All these changes indicate that
you have now invoked the passive tutor and temporarily halted the simulation.

After you have clicked on the stop icon you will also see a help-levels passive tutor dialog
appear in the top left corner of the large monitor. This dialog box is also shown in Figure
20. This dialog has seven buttons of which two are enabled. The two highlighted buttons
indicate the levels of help that the tutor can provide in the passive mode. Starting from the
"failure” and "system" buttons, you can explore the entire knowledge-base of the tutor.

289

Help Categories =
(current fuilnxe)
(feilmxe modes)

(components

' System l (snbsystems)

(fluid-paths)

Figure 20. Help-Levels Passive Tutor Dialog

You choose the system button in the help-levels dialog to access knowledge about the
system. When you click on the system button, the "components”, "subsystems”, and
"fluid-path” buttons are enabled. These three buttons provide you with further options to
select the type of system knowledge description you want to access. When you click on any
one of these three buttons, a new passive tutor dialog associated with the selected button
appears next to the help-levels dialog. This new dialog also contains several selectable
items. You can, by selecting items in the passive tutor dialogs, explore the entire

knowledge-base of the tutor at the component, subsystem and fluid-path levels.

Although interacting with passive tutor dialogs is intuitive, it is helpful to remember the

following five aspects of interaction:

(1) Clicking on highlighted items (buttons, icons, and text) are valid actions and each
action has an associated response.

(2) The response from the tutor usually involves one of the following:

(a) the appearance of a new dialog box with certain items highlighted;

(b) the highlighting of lowlighted buttons in the same dialog box to present further
options;

(c) an answer to your query as text in the dialog box or as graphics in the
schematics.

Both (a) and (b) enable you to make your query more specific.

(3) You can click on any highlighted item in any of the displayed dialog boxes to initiate
communication with the tutor. Only those boxes that are relevant to the current query
are kept open by the tutor.

(4) The context of the information contained in any passive tutor dialog, if unclear, can be
gathered from its parent dialog appearing to its left.

(5) Finally, as long as you interact with the passive tutor your cursor will continue to be in
the shape of a "?" and investigative actions in the schematics will not be possible.
Although an investigative action in this mode will highlight the component, no gauges
will be displayed. This response to an investigative action does not necessarily imply
that there are no gauges attached to this component.

After you have explored system knowledge to your satisfaction, come back to the help-levels
dialog and click on the failures button. You will notice that the tutor closes all the dialogs to
the right of help-levels dialog since they are relevant to the system knowledge and not the

failures. Furthermore, the two buttons in the help-levels dialog associated with failures are

highlighted and the buttons associated with the system button are lowlighted. The two
highlighted buttons are the "current-failure” and "failure-modes" buttons.

Using the failure-modes button you can access information concerning typical system
behavior associated with each mode of failure in the liquid and gas paths. Along with the
abnormal behavior, the circumstances under which the propagation of abnormal behavior
may be curtailed is also provided. Go ahead and click on the failure-modes button and
access the tutor's knowledge concerning the four failure modes.

After exploring the tutor’s knowledge of the failure modes, click on the current-failure
button. The current-failure button brings up a clipboard that extends to the smaller screen
on the right. This clipboard presents a summary of observed results from your diagnostic
actions. For example, based on the observed gauge readings, the clipboard displays the
schematics, subsystems and fluid-paths that contain the affected gauges. The clipboard
also displays the most likely mode of current failure if it can be inferred from the tests
conducted. The extended portion of the clipboard on the smaller screen displays some of the
gauges probed along with their gauge readings. These are mostly those gauges that the tutor
considers critical for your diagnostic task.

In the current session you have investigated the steam drum in the boiler-schematic and
have found the feedwater level to be low. Therefore, your current clipboard shows the boiler-
schematic, the steam-generation subsystem, and the steam path as the affected schematic,
subsystem, and fluid-path respectively. The location of the drum's level gauge along with
the gauge reading observed are also displayed on the extended clipboard.

Sometimes you may notice that the extended clipboard has a biue colored marker next to the
gauge reading. This marker indicates that the reading of that particular gauge has
changed since it was last viewed. Once you re-investigate the gauge, the marker
disappears and the clipboard is updated to contain the latest information. If you notice a
marker appear and then disappear on its own, it simply means that the gauge reading has
not stabilized or is perhaps oscillating. You will get a chance to see an example of this a
little later.

By now you should be familiar with the capabilities of your computer-based tutor in the
passive mode. But since your goal of identifying the failed component has not yet been
accomplished, you need to continue investigating. Furthermore, since the time available to
solve the problem in a session is limited, you do not want to spend all of it interacting with
the tutor. After all, it is your ability to solve problems that will earn you credit and not your
ability to query the tutor. Therefore, do not waste any more time and click on the resume
icon to get back to the troubleshooting mode. Notice that the background colors of resume
and stop icons have reverted to their original colors and the cursor is back in the shape of
an arrow. However, all the passive tutor dialogs last displayed are still visible on the
screens. Since the clipboard was the last passive tutor dialog displayed in your case, it is
still visible even though you are back in the troubleshooting mode.

After returning to the troubleshooting mode, call up the feedwater-schematic and
investigate the distillate-tank. You will once again be able to view gauges attached to the
investigated component which was not possible when you were interacting with the tutor.
Now if you probe the level gauge on the distillate-tank and find it to be abnormal you will
notice that this information is posted on the still visible extended clipboard. Even if you
find that the reading is normal, you will notice that your diagnostic findings get recorded
on the extended portion of the clipboard. This happens because VYASA considers this test as
a significant troubleshooting clue. With the passage of time, you will notice that a red
marker appears next to the distillate-tank's level gauge reading on the extended clipboard.

This marker will disappear after some time only to reappear a little later. Such a behavior
is an indication that the level gauge reading on the distillate-tank is fluctuating.

You can also obtain useful information concerning the current mode of failure from the
clipboard. When you have conducted enough diagnostic tests that match the typical
abnormal behavior associated with a particular mode of failure, the tutor posts a message
on the clipboard. You are informed of the mode of failure that you should suspect based on
the test results obtained by you thus far. For example, if for the current failure you
investigate the deaerating-feed-tank and find its level to be high, you will notice that
"blocked-shut" appears as the most likely mode of failure on the clipboard. This mode of
failure is inferred from the two gauge readings you have observed thus far: a high
feedwater level in the deaerating-feed-tank and a low feedwater level in the steam drum.
Your knowledge of blocked-shut mode of failure should help you infer that the failed
component lies between the deaerating-feed-tank and the steam-drum in the feedwater
path.

If you are not sure of the components that lie between the tank and the drum in the feedwater
path you may want to inquire about it from the tutor. Fluid path information is part of
system knowledge. You can seek this information from the tutor by directly selecting the
system button in the displayed help-levels dialog instead of invoking the tutor via the stop
icon. However, notice that your action has the same effect on the cursor shape and the
background colors of stop and resume icons as you would expect when you invoke the tutor
via the stop icon. After you have found the fluid path information you were seeking you can
get back into the troubleshooting mode by clicking on the resume icon.

By now you have been introduced to all the features of the instructional system. You may
freely interact with it for a while till the session ends. If you have any questions, feel free to
ask.

In this session you are not provided with the solution to the problem unless you happen to
diagnose it on your own. However, in the rest of the sessions the solution will be provided to
you at the end of the session. The solution will be supplemented with explanations for
abnormal behavior of individual gauges. The explanation should help you form a causal
model of fault propagation. Since these explanations can help improve your performance
in subsequent sessions, you are recommended to pay attention to them.

This section has introduced you to all your valid interactions at TURBINIA-VYASA
interface. You are now familiar with all the features of the computer-based tutor. You will
be using this tutor in subsequent sessions to learn the task of troubleshooting a simulated
marine power plant. Your valid interactions with the instructional system described thus
far are briefly summarized in the next section. Following the summary is a description of
how your performance will be measured.

S f Valid Acti

Provided below is a list of actions that you will perform while interacting with TURBINIA-
VYASA.

Call-for-schematic-action: This is an action you perform to call a new schematic or switch
between schematics. There are two ways this may be done. You can either click on an icon
in the schematic menu that represents the schematic you want to view, or, if a schematic is
currently displayed, click on a similar icon in the schematic itself. If you are
investigating components along a suspected path in a schematic that ends up in an icen,
you may prefer to use the icon in the schematic itself to switch to a new schematic. By using
the icon in the schematic, a highlighted icon in the new schematic properly orients you to
continue investigations along the suspected path.

Investigative-action: During your entire period of interaction with the marine power plant
simulator, you are either in troubleshooting or in diagnose mode. When in troubleshooting
mode, your action of clicking on the mouse button with cursor on a selected component
constitutes an investigative-action. You perform investigative-action to view all gauges
attached to the input and output sides of the component being investigated. A new
investigative-action always makes the displayed gauges and the gauge readings of the last
investigated component disappear from the screen. When no gauges are displayed in
response to an investigative-action, it implies that the component investigated has no
gauges attached to it.

Informative-action: The gauges displayed following an investigative-action, when
probed, display the gauge reading. The action of probing displayed gauges by clicking the
mouse on the gauge is called an informative-action.

Diagnose-request-action: This action is performed to switch from the troubleshooting mode
to diagnose mode. You perform this action when you are prepared to indicate your
diagnosis. Clicking on the mouse button after selecting the diagnose icon in the requests
menu constitutes a diagnose-request-action.

Diagnostic-action: Diagnostic-action is performed following the diagnose request action.
In diagnostic-action you select the component that you suspect is responsible for the
observed abnormal system behavior. In indicating your diagnosis, you select the
component in the same manner as you do when investigating the component. Thus,
diagnostic-action is an investigative-action in diagnose mode.

Modal-dialog-action: Modal dialogs deactivate the mouse in regions outside the dialog
box. Before the mouse button can be reactivated for regions outside the modal dialog box,
you are required to terminate interaction with the modal dialog. Terminating interaction
with a modal dialog requires selecting a button dialog item. The action of selecting the
button dialog item in the displayed modal dialog is called modal-dialog-action. Symptom
display dialog and error dialogs are examples of modal dialog that require modal-dialog-
actions.

Help-request-action: The action of clicking on the stop icon to halt the simulation and
invoke the passive tutor is called the help-request-action. Once the help-levels dialog is
displayed on the screen you will probably never need to access the passive tutor through the
stop icon. After seeking help from the passive tutor the first time you will be able to

communicate with it again by selecting any of the highlighted items in any of the
displayed passive tutor dialogs.

Resume-request-action: Every time you initiate interaction with the tutor it is your
responsibility to bring the system back to the troubleshooting mode before you can continue
with diagnosis. The action of clicking on resume icon to get back to the troubleshooting
mode, after you have completed interaction with the tutor, is called resume-request-action.

Tutor-dialog-action: All actions that involve clicking on highlighted items in passive and
active tutor dialogs are called tutor-dialog-actions. Most tutor-dialog-actions are taken
with the cursor in the shape of a "?".

Although your ultimate goal is to identify the failed component responsible for abnormal
system behavior, your performance is affected by other factors. This section will discuss
these factors so that you have a better feel for what is expected of you.

Correct diagnosis: Successful fault diagnosis is the most important measure of your
troubleshooting ability. However, since the problems are tough, your inability to solve
problems has to be evaluated in conjunction with other factors.

Troubleshooting time: The total amount of time taken for troubleshooting is an important
performance measure for those who successfully solve the problem. Those who solve the
problems in less time have a better performance rating.

Number of relevant actions: Even though every informative action has some

informational content, some have more relevance than others for the failure being
investigated. Also, there is a minimum number of relevant informative actions necessary
to diagnose each failure. The number of relevant informative actions past this minimum
number taken to solve a problem is a measure of diagnostic performance. Smaller number
of relevant informative actions required to correctly diagnose the fault implies better
performance.

Number of irrelevant actions: The informative actions that have no relevance to the
current problem are said to be irrelevant. The larger the number of such irrelevant
informative actions during your troubleshooting exercise, the worse is the diagnostic
performance.

Number of incorrect diagnosis: You are penalized any time you make an incorrect
diagnosis. However, the penalty depends upon the component incorrectly identified as
failed. At any stage during the troubleshooting process there are likely candidates for
failed component based on the observed abnormal system states. The likelihood that a
component may have failed increases or decreases as you conduct more diagnostic tests.
Selecting a likely component as the cause of abnormal system behavior does not penalize
you as much as picking a component that cannot have failed. Therefore, even though your
performance is adversely affected by an incorrect diagnosis, it is considered worse if the
suspected component cannot have failed based on the symptoms at the time you express the
diagnosis.

Investigation of unaffected schematics: For each failure, there are only few schematics,
subsystems and fluid paths that are affected. Affected schematics are those schematics that
have gauges with abnormal readings. Investigating components in schematics that are
unaffected by the failure reflects the inability on your part to relate the symptoms to the
correct structural location of the power plant. Thus, investigating components in
unaffected schematics reduces your performance rating. Continuing to investigate
unaffected schematics in spite of the guidance provided by the tutor makes the performance
worse.

Investigation of unaffected subsystems: Like the schematics, investigating components in
subsystems unaffected by failure reduces your performance rating and repeating the
mistake in spite of the tutor's guidance makes it worse.

Investigation of unaffected fluid paths: Once again, like the previous two factors,
investigating components in unaffected fluid paths harm your performance and repeating
the mistake in spite of the tutor's guidance makes it worse.

This manual has guided you through your first session, made you familiar with
TURBINIA-VYASA, and has described how your performance will be measured during
the experiment. From the next session, you will begin your formal training. VYASA will
help you to learn to troubleshoot marine power plants efficiently.

Since it is vital for my experimental results, you are requested not to discuss any aspect of
this experiment with other subjects.

GOOD LUCK!

OPERATOR INSTRUCTIONS FOR TURBINIA-VYASA (ACTIVE MODE)

TURBINIA-VYASA is an instructional system that trains operators to troubleshoot marine
power plants. TURBINIA is the name of the simulated marine power plant used in the
instructional system and VYASA is the computer-based tutor that teaches the
troubleshooting task using TURBINIA. As a naval trainee, you will be trained to diagnose
some common failures in a marine power plant using this instructional system. This
instructional manual will describe your interaction with both TURBINIA and VYASA
following a brief description of a typical marine power plant and its control system.

Introduction

A marine power plant is a collection of components configured to produce mechanical
work from thermal energy. This energy transformation takes place in components called
the turbines. A ship that uses steam as a medium to carry the thermal energy to the turbines
is said to be steam-driven. In a steam-driven ship the source of thermal energy is usually
fossil or nuclear fuel. This section describes the functioning of a fossil fuel-oil fired,
steam-driven marine power plant.

The process of producing mechanical work in a steam-driven marine power plant can be
decomposed into several stages. Each stage is associated with one of the four phases in the
steam cycle: generation, expansion, condensation and feed.

Steam Generation

Figure 1 shows the configuration of components in the generation phase of the steam cvcle.
This phase of the steam cycle takes place in the boiler. The boiler is comprised of tubes and
a steam drum. The boiler tubes contain water that is heated by flue-gases resulting from
the fuel burned in the furnace. This heat transfer is by conduction through the tube walls.
Heating of water in the tubes produces steam. This steam accumulates over the water
surface in the steam drum and is called saturated steam. Saturated steam is sometimes
also referred to as wet steam because of its moisture content.

Continuous steam generation in the boiler increases the steam pressure in the drum.
Boilers are rated by the steam pressure they can handle in the drum. In a 1200-psig boiler,
for example, the maximum steam pressure permitted is 1200-psig. A safety valve is
activated to release pressure whenever it exceeds the maximum value.

Foeed Feedwater

. : Economizer :

: A

o

Q@

Q

<9
e e Lo o e T
P A A A 4 AR R A A A A A B 2 TN B B A S S A A S B B B SV A
TR A a4 P A A A
VAR NV A S a4 r'd Drum honskong? 7 7 7 A
LA A A = . S ry /7 7 7 4
’,,Lﬂ 7, 7 s ryYy 2 72 7 4
1113 P A A A A A 4 PR R R AP A SV A B N "B B B
LA A A 4 PV A A Y A A A 'S LAR A A A A A A B & " AW AW Ny
/II; PN VA A A S B B3 AN N A A A A B B B N " A
///—g PR AN A A A A A VA G S B B B B B v s ' 7 A
s r s Q@ s 7 IIIIZIIIIIIIZIIIVE 7 4
oo =V, ..l &]
///Ilh’:: ::: :: .: /118 7 4
PPV ol I R R A7 B
P AR S A AV A 4 .1;;//11//;}.; PV ' 7 4
P AR S AP AP A 4 III//A/I///IIII/I/IJ
4BOILERIIIII////////I/IIII/II’J
Pl LA A A R A P A A A AP A A B B W S R VI R A

Power Superheated ¢
| Superheater
Generation steam
F]ue%gas
Fuel-air mixture
Furnace o

Figure 1. Steam Generation

The steam pressure in the drum controls the temperature at which the water boils in the
drum. Since the temperature of saturated steam accumulating above the water surface is
the same as the temperature of the water, the saturated steam temperature depends upon the
steam pressure. This temperature at which the water and saturated steam coexist in the
drum is called the saturation temperature. The highest possible saturation temperature is
attained in a boiler when the boiler operates at its maximum rated pressure. Since the
thermal energy of steam in the drum is proportional to its saturation temperature, the heat
content of the saturated steam is maximum at the highest boiler operating pressure.

Even though the boilers are designed for high operating pressures, the saturated steam does
not contain enough thermal energy to operate the turbines at their best efficiency. Thermal
energy of steam is increased by passing it through tubes in the section of the boiler closest to
the furnace. This section of the boiler is commonly known as the superheater. The

superheater is responsible for adding heat to saturated steam at constant pressure. The heat
added to saturated steam in the superheater is called sensible heat. Sensible heat increases

the temperature of the steam beyond the saturation temperature and makes it drier. The
steam from the superheater is called superheated steam and the increase in steam
temperature in the superheater measures the degree of superheat.

Steam Generation

Superheated steam

—» Throttle

Hp-Turbine

Astern- Lp-Turbine

Turbine \
v

v

Steam Condensation

Figure 2. Steam Expansion

Steam Expansion

The second phase of the steam cycle takes place in two steps. First, the superheated steam
from the boiler expands in a high pressure turbine to convert thermal energy to mechanical
work. Then, since the steam still contains a considerable amount of thermal energy, it is
expanded further in a low pressure turbine connected to the exhaust of the high pressure
turbine. Figure 2 shows the arrangement of low and high pressure turbines in a power
plant.

Steam Expansion

Saltwater)

Condenser l
* Scoop

Hotwell Valve <@—{ Scoop |— Sea

Saltwater

- - Se
ey D ey D G

Condensate Valve Cireculatoy
Pump
Cpd-Valve Gland|Steam

Condensate . |Gland-Exhaust First-Stage
—> Condenser [— Heat::gr

v Deaerating
Atmospheric Feed
Drain-Tank Tank
Feed

Figure 3. Steam Condensation

Steam Condensation

After expansion, the third phase of the steam cycle is steam condensation which takes place
in the main condenser (Figure 3). The condenser is a sealed container with tubes that
carry cold sea water. When the steam passes over these tubes it loses latent heat to the cold
water. When sufficient latent heat is withdrawn from the steam, it changes phase and
turns back into water, called condensate.

Steam pressure at the turbine exit is low and steam can flow into the main condenser only
if the pressure in the condenser is lower. Since the condensate occupies less volume than
the same amount of steam and because the condenser is a sealed container, condensation
creates a vacuum in the condenser shell. This vacuum in the condenser shell helps
maintain a continuous flow of steam from the turbines to the condenser.

As the steam from the turbines turns into condensate, it flows into a collecting tank called
the hotwell. The condensate-pump then pumps the condensate to the deaerating-feed-tank
via the gland-exhaust-condenser. In the gland-exhaust-condenser, the condensate from
hotwell serves as the cooling medium to condense steam from the turbine glands. While
the condensate from the gland-exhaust-condenser flows to the deaerating-feed-tank, the
condensed gland steam is returned to the condensate system by way of atmospheric-drain-
tank.

Feed

Feed, the last phase of the steam cycle, begins at the deaerating-feed-tank. The deaerating-
feed-tank is a storage tank for feedwater. It also contains apparatus to remove dissolved
oxygen entrained in the condensate. The other major components in the feed phase are the
main feed pump, the feed water regulator and the economizer. These components are
shown in Figure 4. The main feed pump is responsible for pumping water to the boiler. The
feed water regulator regulates feedwater into the economizer enroute to the boiler. The
economizer is a heat exchanger that preheats the feedwater.

Each of the four phases of the steam cycle perform an important system function. The
collection of components responsible for the function constitute a functional subsystem.
Thus, steam generation, steam expansion or power generation, steam condensation, and
feedwater preheating are also essential subsystems of a marine power plant. In addition, a
power plant typically has subsystems that perform other functions necessary for its
operation. Combustion, auxiliary steam use, control air, lube oil, and saltwater service are
examples of such subsystems.

Steam Condensation |

Deaerating
Feed
Tank

Feed-Pump {—P» Flz\‘:eee;uvlv:ttce):

Economizer

v

Steam Generation

Figure 4. Feed

Combustion involves burning the fuel-air mixture prepared in the burner. The thermal
energy released during combustion is used to heat water in the boiler. The components that
make up the combustion subsystem are shown in Figure 5. These components lie along two
fluid paths: combustion air and fuel-oil.

Combustion air is supplied to the burner by a forced draft fan operated by either a steam
turbine or an electric motor. Fuel-oil is supplied to the burner by pumping fue! from a
settling-tank. For proper combustion, both the combustion air and the fuel-oil need to be at
the proper pressure and temperature. Furthermore, for complete combustion the mass of air
required is fourteen times the mass of fuel-oil.

Atmosphere
Forced-Draft
Fan
Air-Heater
Wind-Box
; Fuel-oil Heater
Air-Register + +
Fuel-oil Fuel-Pump
Control :
Valve <« Strainen f
Steam v Fuel-oil guetllfoil
Ge tio B Master ettling
G nera ;4— urner [d— Valve Tank

Figure 5. Combustion Subsystem

Incorrect quantity or improper heating of either the combustion air or fuel-oil causes
combustion problems. Inadequate quantity or insufficient heating of combustion air and
excessive flow of fuel-oil or insufficient heating of it causes incomplete combustion.
Incomplete combustion causes dark smoke in the boilers. On the other hand, excess
quantity of combustion air in the fuel-air mixture either due to increased flow rate of air or
reduced flow rate of fuel-oil extinguishes the flame in the furnace. Excessive preheating of
either the combustion air or the fuel-oil causes yet another combustion problem called
preignition. In preignition, the fuel starts to burn before it reaches the burner.

The auxiliary steam use subsystem shown in Figure 6 uses desuperheated steam for
various purposes. Desuperheated steam, unlike the superheated steam, is low pressure
steam. Desuperheated steam is obtained by passing superheated steam through the
desuperheater. Low pressure desuperheated steam is used (1) by the auxiliary power units

to run equipment such as the feedwater-pump, fuel-pump, saltwater-service-pump and the
forced-draft -fan; (2) to preheat the fuel-oil and the feedwater in the deaerating-feed-tank;
and (3) by the the gland seals to prevent leakage of air into the turbine casings and steam
leakage out of the casings.

Preheating <«@§— Hp-Reducing-Station ———

(to preheat feedwater)

Cos mbusho] I n «—{ Lr-Reducing-Station —
(to preheat fuel-oil)

(to turbine gland seals) < Desuperheater
Combustion Atomizing-Steam
Subeystem @ Reducing-Station ——
(to atomize steam) Steam Generation

Feedwater
Preheating <@~ Feed-Pump-Turbine |«
Subsystem

(to operate feed-pump)

Figure 6. Auxiliary Steam Use Subsystem

The control air subsystem is responsible for distributing control air to many valves and
regulators. These valves and regulators are operated by the control air. Figure 7 shows the
components that constitute the control air subsystem of a marine power plant.

The lubrication subsystem has the primary purpose of lubricating moving parts and
removing the heat produced by friction. The subsystem consists of a pump that draws lube-
oil from the oil-sump and distributes it to those components that need lubrication. Figure 8
shows the components in the lubrication subsystem.

Atmosphere

Y

Compressor |—Jp{ Air-Cooler

A

Air-Receiver

Pressure-Switchjeg

Figure 7. Control Air Subsystem

R

Dehumidifier]
Turbine
% Gears Bearings
Lube-Oil
Cooler
Lube-0Oil Thrust
Pump Block

f

Air
¢ |'> Separator

Lube-Oil-Sump

—

Figure 8. Lubrication Subsystem

The saltwater service subsystem distributes the cold sea water to remove heat from units

dissipating heat. Figure 9 shows sections of the power plant cooled by the saltwater.

—» Air-conditioning —pm
Unit
- Turbogenerator —Jp»
Saltwater ngnit
Service
Pump > Diesel-generator —jp»]
? Unit
Saltwater L Lube-oil Cooling —p»
Strainer Unit
Sea Sea

Figure 9. Saltwater Service Subsystem

Combustion > Steam Generation Power Generation
Subsystem Subsystem Subsystem

A

Auxiliary Steam Use
Subsystem

Y

Feedwater Preheating Steam Condensation
Subsystem] Subsystem

Figure 10. Interacting Subsystems of Marine Power Plant

This section described the decomposition of a marine power plant into nine functional
subsystems. It also described the role each subsystem plays in achieving the overall goal of
producing power. The interaction between the subsystems to produce power is summarized
in Figure 10. For constant power supply, the operating conditions for these subsystems can
be set to safely meet the demand. However, the demand for power in a ship is never
constant but varies with load. Control systems manage the power plant so that it can satisfy
the changes in the demand for power due to fluctuating load. The boiler control system is
the most important among all control systems in a marine power plant. The boiler control
system of most modern Navy vessels is sophisticated and needs minimum human
intervention. Some components of the automatic boiler control system (ABC) are described
next.

Automatic Boiler Control System

Navy vessels typically have the following three ABC systems: automatic combustion
control (ACC), feedwater control (FWC), and makeup and excess feed control systems.
These control systems perform the functions of measuring, comparing, computing and
correcting. In each control system, a state value of interest is measured; compared to a
desired value; a new operating condition, if necessary, is computed; and finally a
correction made ir: the operating conditions to reduce the deviation between the measured
and the desired value of the state.

Automatic Combustion Control System. The function of the automatic combustion control
system is to maintain the boiler drum pressure at a constant value during steady and
changing load conditions. The ACC system accomplishes this task by

(1) constantly measuring the steam drum pressure and combustion air flow;

(2) comparing the steam drum pressure to the specified designed value;

(3) computing the amount of change, if any, in the furnace combustion; and

(4) correcting furnace combustion as needed.

When the steam demand on the boiler is increased, the steam drum pressure decreases
because the rate of steam withdrawal from the drum becomes greater than the rate of steam
production in the boiler. This pressure drop is sensed by the ACC system and an increase
in furnace combustion is computed to meet the increase in the demand for steam.
Computing the increase in furnace combustion involves computing the increase in the
supply of combustion air and a proportionate increase in the supply of fuel-oil to assure
complete combustion. The ACC system controls the combustion air flow by regulating the
supply of steam to the forced draft fan turbine and controls the fuel-oil flow by positioning
the main-fuel-oil-control-valve. The measurement of air flow provides the ACC system
with the feedback necessary to perform this function.

Feedwater Control System. The function of the feedwater control system is to maintain a
constant water level in the steam drum. The FWC system automatically does this by
(1) measuring the steam drum water level and the feedwater flow rate to the boiler;
(2) comparing the measured water level in the drum to a designed value;
(3) computing the required change, if any, to the rate of feedwater flow; and
{(4) correcting the feedwater flow rate as needed.

When the load is steady, the feedwater flow rate into the boiler equals the rate of steam
consumption and the water level in the steam drum is normal. But, when the load changes,
so does the demand for steam. Any change in this demand is detected and the feedwater
flow rate is increased or decreased to equal the steam flow rate out of the boiler. The actual
control of feedwater flow is accomplished by adjusting the air-operated diaphragm of the
feedwater regulator between the feed yump and the boiler.

Makeup and Excess Feed Control System. Operation of a steam-driven power plant often
requires the addition or removal of water from the steam cycle. The makeup and excess

feed control system is responsible for doing this and for maintaining a specified level of
feedwater in the deaerating-feed-tank.

Whenever the level in the deaerating-feed-tank deviates from the specified value, water is
either withdrawn from or added to the deaerating-feed-tank. In both cases the process is
facilitated by two standby tanks. The two standby tanks are the atmospheric-drain-tank

and the distillate-tank. When the feedwater level in the deaerating-feed-tank falls below
normal, the makeup-feed-regulator is adjusted by the control system to increase flow from
the standby tanks. Increased flow into the deaerating-feed-tank compensates for the loss
in the feedwater level. Similarly, a deaerating-dump-regulator is activated by the control
system to withdraw excess feedwater from the deaerating-feed-tank when the level in the
tank rises above the normal value.

In addition to the automatic boiler control system, a power plant has several other controls
which are not discussed here because they are not relevant to your task. However,
knowledge concerning some common modes of failure in components of a power plant is
useful for diagnosing faults and is described next.

Common Modes of Failure
A mechanical component in a physical system like the marine power plant can fail in
more than one way. The four most common modes of failure for components of TURBINIA

are: (a) blocked-shut, (b) stuck-open, (c) leak-in, and (d) leak-out. Faults in components fit
one or more of these four mode types.

A blocked-shut component offers greater than normal resistance to the flow of fluid for the
desired operating condition. A valve that cannot position its vane to a larger opening
demanded by the new operating condition or a strainer that is clogged with dirt are
examples of the blocked-shut mode of failure.

A stuck-open component offers less than normal resistance to the flow of fluid for the
desired operating condition. A valve that refuses to position its vane to a smaller opening
on command is an example of the stuck-open mode of failure.

A component failed in leak-in mode allows undesirable or excess flow of fluid into it,
while a leak-out mode of failure causes undesirable passage of fluid out of the component.
A vacuum tank that allows air to leak in from outside and a ruptured piping that allows the
fluid it carries to leak out from it are examples of leak-in and leak-out modes of failure
respectively.

Each failure mode is responsible for a system behavior that manifests in the form of a
typical pattern of abnormal state values. During diagnostic problem solving, it is often
helpful to identify the failure mode from system behavior and confine the search to
components that fail in the identified mode. The typical system behavior associated with a
fault also depends upon the phase of the fluid in the affected path. The following set of
examples explains the abnormal system behavior for each of the four modes of failure in
liquid and gas paths.

A blocked-shut mode of failure in a liquid path causes the liquid level downstream to be
lower than normal and the level upstream higher than normal. A similar blocked-shut
mode of failure in a gas path, on the other hand, decreases the downstream gas pressure
and increases the upstream pressure.

A stuck-open mode of failure in a liquid path causes the liquid level downstream to be
higher than normal and the level upstream lower than normal. A similar stuck-open
mode of failure in the gas path increases the downstream gas pressure and decreases the
upstream pressure.

When a container that stores liquid allows more of the same liquid to leak in, the level of
the liquid in the container increases. When the same container stores gas and allows
more of it to leak in from the high pressure surroundings, the pressure in the container
becomes abnormally higher.

A ruptured component that allows liquid to leak out causes a drop in the liquid level
upstream as well as downstream from the place of leakage. A similarly ruptured
component carrying gas causes a drop in pressure upstream and downstream from the
place of leakage.

Although there is a typical system behavior associated with each mode of failure, it is not
always easy to observe the abnormal behavior in a real system. This is due to the limited
number of available gauges. Therefore, pressures, temperatures, and flows cannot be
measured across every component. Furthermore, certain components can prevent
propagation of expected abnormal behavior past them. For instance, a source-sink such as
a deaerating-feed-tank located downstream in the blocked-shut condensate path prevents
further propagation of low level downstream from the tank. The deaerating-feed-tank
imposes such a behavior on the system because it is an infinite source of feedwater which
temporarily compensates for any loss of water level. A summary of typical system
behavior associated with the four failure modes is shown in Table 1.

Failure Fluid State Abnormal Behavior Propagation Limited By
Mode Upstream Downstream | Upstream Downstream
Infinite Infinite
Liquid Level High Low Sink Source
Blocked-Shut
Gas Pressure High Low Safety Infinite
Valve Source
Infinite Infinite
Liquid Level Low High Source Sink
Stuck-Open
Gas Pressure Low High Infinite Safety
Source Valve
Infinite Infinite
Liquid Level High High Sink Sink
Leak-In
Gas Pressure High High Safety Safety
Valve Valve
Liquid Level Low Low
Leak-Out Infinite Source
Gas Pressure Low Low

Table 1. Typical Abnormal System Behavior

This completes a description of a typical marine power plant, its control systems, the four
common modes of failure in components of the power plant, and the typical abnormal
system behavior associated with each of the four failure modes. The next section describes
TURBINIA's interface.

310

The Interface

TURBINIA- the marine power plant simulator, and VYASA- the computer-based tutor have
been developed on a dual screen Apple Macintosh II workstation. The dual screen
configuration consists of one 19" color monitor and a 13" color monitor. In this set up, the
larger monitor is the left screen and the smaller monitor is the right screen. A single
button computer mouse that can point to all locations on both screens is the only input
device. You will use this mouse to interact with the direct manipulation interface of both
TURBINIA and VYASA. Almost all your actions involve moving the mouse cursor to a
desired location and clicking on the mouse button. All valid user actions have appropriate
response while invalid actions are ignored by the system. Valid actions at the joint
TURBINIA-VYASA interface are described in detail later.

The interface to TURBINIA-VYASA consists of seven schematic windows, a schematic
menu, a requests menu, a hypothesis menu, a communication dialog, multiple levels of
hierarchically organized passive tutor dialogs, a symptom display dialog and several
error dialogs.

The seven schzmatics display the physical connections between the components of the
power plant. You will use these schematics to investigate components and probe gauges
attached to these components.

The schematic menu displays seven icons each representing one of the seven schematics.
You will use these icons to access the schematics.

The requests menu has three icons. You will use the first icon to request for an opportunity
to diagnose the fault, the second to temporarily halt the simulation and the third to resume
the simulation.

The hypothesis menu has four items. You will use the hypothesis menu to communicate
with your computer-based tutor VYASA. The first item "View" is used to review the failure
hypotheses that you have provided to the tutor. "Add” and "Delete” are used to modify
hypotheses. "Advice” provides assistance from the tutor.

The communication dialog is used by VYASA to provide instructions,
The passive tutor dialogs establish your communications with VYASA when you seek
knowledge concerning the structure, function and behavior of the subsystems and the

components. You will use the passive tutor dialogs to explore the tutor's knowledge-base.

The symptom display dialog shows the initial symptoms observed at the time you begin
your troubleshooting task.

The error dialogs convey appropriate messages when you make a mistake.

The display of error dialogs, symptom display dialog, or new text on the communication
dialog is accompanied by a beep.

A more detailed description of the interface and valid forms of your interaction with the

system follows. You will now be given a guided tour of your first session with the
instructional system.

Ji1

A i ith TURBINIA-VYA

Welcome to your first session with TURBINIA-VYASA. You will soon be troubleshooting a
simulated failure in a marine power plant. You will be aided in your task by the computer-
based tutor VYASA. This computer-based tutor functions in two modes: passive and active.
In the passive mode, the tutor only responds to your queries while in the active mode it
intervenes on its own to provide you with instructions. Your first session has been
designed to make you familiar with the joint interface of TURBINIA and VYASA. This
first session will be short containing a single problem. Subsequent sessions will be of 45
minutes each and will require you to solve three problems. Use the instructions in this
section to guide yourself through the first session.

At the beginning of every session, the dual screen Apple Macintosh II workstation displays
three menus on the large screen and two dialog boxes on the small screen. The three menus
on the large screen are the schematic menu, the requests menu and the hypothesis menu. A
communications dialog is displayed on the bottom edge of the small screen and an output
file path dialog is displayed above the communications dialog. This display of the two
screens at the start of every session is also shown in Figure 11. If you are starting your first
session now, make sure that the screens in front of you look like Figure 11.

J12

$U9940G JO uorjearngdyuo)) 11 aangig

uda10g adie]

Us910s [[BWG

—

[10-aqn]

1090,

=)

%

Jatemyeg

a3

Schematic menu:

The schematic menu on the large screen and also shown in Figure 12, displays seven
icons. Each icon represents one of the seven schematics of the simulated power plant. The
names of the seven schematics are also provided in the textual form above each icon. The
seven schematics are the steam, boiler, feed-water, fuel-oil, control-air, saltwater and
lube-oil. You can access any of the seven schematics by clicking on the icon representing
the schematic.

Menu

Figure 12. Schematic Menu

Requests menu:

The requests menu adjacent to the schematic menu displays three icons (Figure 13). The
first is the diagnose icon. You click on diagnose icon when you have sufficient evidence to
confirm your failure hypothesis. By clicking on the diagnose icon, you indicate to the
instructional system your intention to identify the component responsible for the observed

314

abnormal behavior. You are later provided with an example of how to use the diagnose
icon.

The second icon on the requests menu is the stop icon. A click on the stop icon can halt the
simulation putting you in a mode to interact with the passive tutor. Your interaction with
the passive tutor is later described in detail.

The third icon on the requests menu is the resume icon. The resume icon is used to restart
simulation after it has been halted to communicate with the passive tutor. Since you are
currently not interacting with the passive tutor, the resume icon is shown disabled. All
disabled icons in this application have an inverted-gray or tan colored background as
compared to enabled icons that are shown in gray.

-
)
k

Figure 13. Requests Menu

Communication dialog:

The computer-based tutor VYASA communicates with you through textual messages and
instructions presented on the communication dialog. This communication dialog is
displayed on the bottom edge of the small monitor (Figure 14). All communications
through this dialog box are accompanied by a beep.

315

Figure 14. Communication Dialog

Output file path dialog:

Output file path dialog is displayed above the communication dialog on the small screen at
the beginning of each new session. This dialog is also shown in Figure 15. Output file path
dialog expects you type in a name of the file to store your performance data. You begin
every session by typing in your last name to create this file. As you type in, you should see
the characters appear in the editable text region bounded by a rectangle in the output file
path dialog. When you are done typing in your name, check the spelling. If you have made
a spelling error, use the delete key on your keyboard to erase characters and make the
corrections. When you have your last name spelt correctly, hit the return key.

QA gsteaml

(O gauge-readings = hardDisk

DY laad.lisp

(O Mac-Graphics
(0O Mac-G6raphics-new

5 READ-ME
(O screens

"ijﬂd | Cancel |

Figure 15. Qutput File Path Dialog

316

WARNING

Initial Condition: The Ship Is Undervay At Slov Speed Of Twventy
Rpm

Symptoms: When Speeding Up To Full Speed Of Seventy Rpm
The Boiler Level Drops Lovw.

Figure 16. Symptom Display Dialog

Symptom display dialog:

After you have hit the return key, you should see the symptom display dialog appear with a
beep in the center of the large screen. The symptom display dialog should look like the one
shown in Figure 16. The symptom display dialog shows you the simulated ship's initial
operating condition and the first symptoms that indicate the existence of a problem. For
this first session, VYASA has picked a failure that has caused the feedwater level in the
boiler to fall. This information is conveyed to you through the symptom display dialog
currently displayed in front of you on the left screen. Your task is to identify the failed
component responsible for this abnormal system behavior.

Since the time taken to solve problems is also important, each problem is simulated for 15
minutes. There is, however, no cascading of failure in this 15 minute period. Therefore,
your task is confined to identifying a single component responsible for abnormal system
behavior. During the next 15 minutes, you may have to make several investigations before
you can accomplish your task. This guided tour of your first session will familiarize you
with the actions that are necessary to achieve your goal.

You do not have to memorize the ship's initial operating conditions or the symptoms
displayed in the symptom display dialog because you are provided with the facility to recall
this information. However, remember that the symptom display dialog is a special dialog
used by the application which deactivates your mouse for regions outside the dialog box.
Only when you complete interaction with such a dialog, does the mouse get activated again
for regions outside the dialog box. This instructional system has several of these special
dialogs called the modal dialogs. These dialogs respond with a beep if you click the mouse
elsewhere without first completing the interaction with them. As an example, try clicking
the mouse with the cursor on one of the icons in the schematic menu while the modal
symptom display dialog is still visible on the screen. The normal system response to
clicking on a schematic menu icon is to display the schematic associated with the icon
selected. But this response is currently suppressed by the open modal symptom display
dialog. Instead, the system sounds a “beep” to remind you to first finish interacting with
the open modal dialog.

a7

You should click on "OK" button in the symptom display dialog to proceed further.
Clicking on "OK" completes your interaction with the symptom display dialog and the
modal dialog is closed.

Schematics:

Schematics are pictorial representations of the simulated marine power plant. Each
schematic presents a view into the structure of the system. A schematic shows the sequence
in which components and the gauges appear in the system. If you now click on the boiler
icon in the schematic menu, the boiler schematic will be displayed. The boiler schematic
is shown in Figure 17. Although the boiler schematic has been chosen as an example to

318

memaydg J910g ‘L1 arndiy

faura ajeam

._Ba.o._lu:T._

w > s
WeRS -uoa-T :

uﬂﬂﬂnu—.ﬂuﬁf'll_

1astdar-

X0q-puLa

QEEL u..iL
3

u._nn._nedbL

MeWayls-4apoq

319

explain the various fcatures of the schematic interface, we could as well have selected any
other schematic for this purpose.

All the components in the boiler schematic have been represented by rectangles. The
connections between components are shown by firm lines connecting the components.
These firm lines are known as connectors. The direction of flow of fluid from one
component to another is shown by the arrow head on these connectors. For example, the
economizer and the drum have a two way connection. The connection from the economizer
to the drum represents the flow of feedwater while the connection in the reverse direction
represents the flow of flue-gases.

Some connectors, like the one connecting the feedwater icon to the feedwater-regulator,
have a component on one end and an icon at the other. Such connectors represent
connections between components that are in different schematics. The icon at one end of
such connectors represents the schematic in which the connected component can be viewed.
In this example, the input connector to the feedwater-regulator physically originates from
the hp-heater in the feedwater schematic.

Now click on the feedwater icon at the end of the input connector of feedwater-regulator and
see what happens. You should notice two things. First, the display switches to feedwater
schematic. Second, the boiler icon on output connector from the hp-heater is highlighted
with a red band around it. The highlighted boiler icon helps you establish the physical
connection between the hp-heater and the feedwater-regulator. Click on the highlighted
boiler icon to get back to the boiler schematic. Notice that the boiler schematic now has two
feedwater icons highlighted, one connected to the feedwater-regulator you clicked on
earlier, and the other to the economizer. This simply means that the hp-heater is connected
to both the feedwater-regulator and the economizer in the boiler schematic.

Most components of TURBINIA are uniquely represented in one of the seven schematics.
However, there are a few that have multiple representations. For example, the condenser
and the hp-heater appear in both the steam and the feedwater schematics. Switch to the
steam schematic by selecting the steam icon in the schematic menu and locate the
condenser and the hp-heater. Multiple representation of these components in schematics is
indicated by feedwater icons adjacent to these components. Notice that these icons do not
have a connector attached to them. Click on any one of these two icons and your display
will switch to the feedwater schematic. The rectangular boxes marked condenser and hp-
heater, in this feedwater schematic, are another representation of the same condenser and
hp-heater you saw in the steam schematic.

Troubleshooting for failure indicated by the symptoms at the beginning of the session
involves gathering information about system states. You collect information concerning
system states using a two-action sequence. The first action of the sequence is called the
investigative action. Investigative action enables you to display gauges attached to a
cowmnponent, if any. The second action is the informative action that allows you to access the
actual gauge reading. The investigative and the informative actions are now explained
with an example.

In the current session you have been asked to detect the failure responsible for decreasing
water level in the boiler. It is therefore reasonable to investigate components near the
boiler. Click on the boiler icon in the schematic menu to view the portion of the power plant
with abnormal behavior. As a part of the process to confirm the symptom indicated, move
the cursor over the drum and click on it. You have now taken an investigative action and
all gauges attached or relevant to the drum are displayed as a result of this action. This
action also highlights the last investigated component, the drum, in blue.

There are three types of gauges in TURBINIA: pressure, temperature, and flow-or-level
gauges. These three gauges are represented by icons with letters P, T and L inscribed in
them to indicate pressure, temperature, and level respectively. Although there is no visible
distinction between the flow and the level gauges, it may be helpful to remember that level
gauges are attached to tanks such as the deaerating-feed-tank, fuel-oil-settling-tank,
atmospheric-drain-tank, distillate-tank, hotwell, and drum. Furthermore, there is just
one gauge that measures flow and is located in the fuel-oil path across the strainer.

The drum you are investigating has all three types of gauges attached to it. There are two
pressure gauges, one on the flue-gas connector to the economizer and the other on the steam
drum. There is a temperature gauge on the feedwater connector from the economizer and a
level gauge on the steam drum. The pressure gauge on the steam drum measures the
saturated steam pressure in the drum itself and as such is not located over a connector.,

To view the reading of a displayed gauge, you have to click on it. This action of probing a
gauge is called an informative action. Select the displayed level gauge on the drum and
click on it. First, the drum is lowlighted in yellow-brown and then an icon appears near
the gauge. This icon is a qualitative representation of the current level. TURBINIA uses
five different qualitative representations of state values. These five are normal, low,

slightly-low, slightly-high and high, each represented by an icon as shown in Figure 18.

low s-low normal s-high - high

Figure 18. Qualitative State Representation

When you click on the level gauge attached to the drum you should see an icon indicating
low level appear at the bottom of the gauge. However, if you see an icon that indicates a
slightly-low or normal reading, do not be alarmed. Remember that TURBINIA starts
simulating the failure condition at the beginning of the session and if the failure is located
far away from the drum, the failure effects will take time to propagate to the drum.
Therefore, the low level symptom at the drum, indicated at the beginning of the session,
may not yet be visible. You will, however, be able to observe a low level reading during the
course of the session.

You should never assume that a gauge reading will be the same at all times after you have
observed it. While the gauge readings may change with time, the displayed gauge
readings are not dynamically updated. Therefore, you must take an informative action
when you need to see the current gauge reading. Thus, if you did not find the drum level
low earlier, keep repeating the informative action of selecting the drum's level gauge and
you will eventually find it to be low.

You can access any displayed gauge or a gauge reading only until the time you take a new
investigative action. Click on the superheater to see what this means. You will discover
that all gauges attached to the drum and the probed gauge readings that were visible

disappear. Instead, two new gauges, one pressure and the other temperature attached to the
superheater are now displayed in the superheated steam path. Along with the appearance of
the gauges, the newly investigated superheater is highlighted in blue.

There are certain components that do not have gauges attached to them. The air-damper is
a good example of such a component in the boiler schematic. If you click on the air-damper,
all visible gauges and gauge readings on the schematic disappear. Also, the last
investigated component is lowlighted and the air-damper is highlighted. However, no new
gauges are displayed because there are none attached to the air-damper.

The troubleshooting task typically involves several investigative and informative actions
in one or more schematics. Assume that you have conducted several tests and now you have
enough evidence to support hypothesis about the failure. Your next valid action, under these
circumstances, is to submit a request for conveying the diagnosis. To make this request
you click on the diagnose icon in the requests menu. Go ahead and click on the diagnose
icon to see how VYASA prepares to accept your diagnosis.

When you click on the diagnose icon, VYASA asks you to select the failed component. This
message is conveyed to you through a text appearing in the communications dialog at the
bottom of the small screen. You then select the component that, in your opinion, is
responsible for the abnormal system behavior. Selecting a failed component is an action
identical to investigative action. However, this time, when you click on a component, no
gauges are displayed. Instead, if your diagnosis is correct, a message congratulating you
appears on the communication dialog. Otherwise, an error dialog accompanied by a beep is
displayed over the schematic. This error dialog is shown in Figure 19.

As an example of erroneous diagnose, click on the economizer. The economizer is not the
failed component responsible for the current abnormal system behavior. When you
complete the click, an error dialog appears over the boiler schematic. This error dialog is a
modal dialog. You can close this error dialog by selecting one of the two options available.
If you choose "try again” you remain in the diagnose mode and can revise your diagnosis.
On the other hand, if you choose "investigate”, you are back in the troubleshooting mode
where selecting a component displays the gauges attached to it. Click first on "investigate”
in the error dialog and then on the drum and you will notice that you are out of the diagnose
mode and the four gauges attached to the drum reappear on the screen.

—

B Sorry, your diagnosis is incorrect. Do you
want to ry again or investigate further.

Ty Agen
'wind-bdox

ﬁe conomizer
— I

Figure 19. Incorrect Diagnosis

On all schematics you will observe the presence of two other icons that do not represent a
schematic and have not also been discussed as yet. One icon appears on the right top corner
and the other on the right bottom corner of all schematics. The icon on the right bottom
corner is a Georgia Tech. copyright icon. This icon is disabled and has no response. The
icon at right top corner is a symptom icon and is used to recall the initial symptoms. Click
on this icon and you will see the symptom display dialog reappear. Thus, you can access
the ship's initial operating conditions and the initial symptoms at any time. You can once
again close the modal symptom display dialog by clicking on the "OK" button.

In this session you have not yet had the opportunity to interact with VYASA- your computer-
based tutor. VYASA can function in two modes, passive and active. In the passive mode,
you are solely responsible for initiating the communications. In the active mode, VYASA
takes the initiative and provides instructions when it identifies a possible misconception
based on your actions. When both the passive and active modes function simultaneously
VYASA is said to operate in dual-mode. In all your sessions, you will find VYASA
operating in dual mode. You will now explore and experience the capabilities of your
computer-based tutor in both the modes.

VYASA in Passive Mode:

Click on the stop icon in the requests menu to halt the simulation and invoke VYASA in
passive mode. Notice how the stop and the resume icons change their background colors.
The stop icon background changes to tan indicating that it has been disabled. At the same
time, the background of resume icon turns gray indicating that it has been enabled. Also
notice that the cursor changes shape and turns into a "?". All these changes indicate that
you have now invoked the passive tutor and temporarily halted the simulation.

After you have clicked on the stop icon you will also see a help-levels passive tutor dialog
appear in the top left corner of the large monitor. This dialog box is also shown in Figure
20. This dialog has seven buttons of which two are enabled. The two highlighted buttons
indicate the levels of help that the tutor can provide in the passive mode. Starting from the
"failure” and "system” buttons, you can explore the entire knowledge-base of the tutor.

|I== Help Categories —=

(current fuilnxe)
(fuiluxe modes |

(components)

System (sabsyswems)

(freid-patis)

Figure 20. Help-Levels Passive Tutor Dialog

You choose the system button in the help-levels dialog to access knowledge about the
system. When you click on the system button, the "components”, "subsystems”, and
"fluid-path” buttons are enabled. These three buttons provide you with further options to
select the type of system knowledge description you want to access. When you click on any
one of these three buttons, a new passive tutor dialog associated with the selected button
appears next to the help-levels dialog. This new dialog also contains several selectable
items. You can, by selecting items in the passive tutor dialogs, explore the entire
knowledge-base of the tutor at the component, subsystem and fluid-path levels.

Although interacting with passive tutor dialogs is intuitive, it is helpful to remember the

following five aspects of interaction:

(1) Clicking on highlighted items (buttons, icons, and text) are valid actions and each
action has an associated response.

(2) The response from the tuter usually involves cne of the following:

(a) the appearance of a new dialog box with certain items highlighted;

(b) the highlighting of lowlighted buttons in the same dialog box to present further
options;

(c) an answer to your query as text in the dialog box or as graphics in the
schematics.

Both (a) and (b) enable you to make your query more specific.

(3) You can click on any highlighted item in any of the displayed dialog boxes to initiate
communication with the tutor. Only those boxes that are relevant to the current query
are kept open by the tutor.

(4) The context of the information contained in any passive tutor dialog, if unclear, can be
gathered from its parent dialog appearing to its left.

(5) Finally, as long as you interact with the passive tutor your cursor will continue to be in
the shape of a "?" and investigative actions in the schematics will not be possible.
Although an investigative action in this mode will highlight the component, no gauges
will be displayed. This response to an investigative action does not necessarily imply
that there are no gauges attached to this component.

After you have explored system knowledge to your satisfaction, come back to the help-levels
dialog and click on the failures button. You will notice that the tutor closes all the dialogs to
the right of help-levels dialog since they are relevant to the system knowledge and not the
failures. Furthermore, the two buttons in the help-levels dialog associated with failures are
highlighted and the buttons associated with the system button are lowlighted. The two
highlighted buttons are the "current-failure" and "failure-modes” buttons.

Using the failure-modes button you can access information concerning typical system
behavior associated with each mode of failure in the liquid and gas paths. Along with the
abnormal behavior, the circumstances under which the propagation of abnormal behavior
may be curtailed is also provided. Go ahead and click on the failure-modes button and
access the tutor's knowledge concerning the four failure modes.

After exploring the tutor's knowledge of the failure modes, click on the current-failure
button. The current-failure button brings up a clipboard that extends to the smaller screen
on the right. This clipboard presents a summary of observed results from your diagnostic
actions. For example, based on the observed gauge readings, the clipboard displays the
schematics, subsystems and fluid-paths that contain the affected gauges. The clipboard
also displays the most likely mode of current failure if it can be inferred from the tests
conducted. The extended portion of the clipboard on the smaller screen displays some of the
gauges probed along with their gauge readings. These are mostly those gauges that the tutor
considers critical for your diagnostic task.

In the current session you have investigated the steam drum in the boiler-schematic and
have found the feedwater level to be low. Therefore, your current clipboard shows the boiler-
schematic, the steam-generation subsystem, and the steam path as the affected schematic,
subsystem, and fluid-path respectively. The location of the drum'’s level gauge along with
the gauge reading observed are also displayed on the extended clipboard.

Sometimes you may notice that the extended clipboard has a blue colored marker next to the
gauge reading. This marker indicates that the reading of that particular gauge has
changed since it was last viewed. Once you re-investigate the gauge, the marker
disappears and the clipboard is updated to contain the latest information. If you notice a
marker appear and then disappear on its own, it simply means that the gauge reading has
not stabilized or is perhaps oscillating. You will get a chance to see an example of this a
little later.

By now you should be familiar with the capabilities of your computer-based tutor in the
passive mode. But since your goal of identifying the failed component has not yet been
accomplished, you need to continue investigating. Furthermore, since the time available to
solve the problem in a session is limited, you do not want to spend all of it interacting with
the tutor. After all, it is your ability to solve problems that will earn you credit and not your
ability to query the tutor. Therefore, do not waste any more time and click on the resume
icon to get back to the troubleshooting mode. Notice that the background colors of resume
and stop icons have reverted to their original colors and the cursor is back in the shape of
an arrow. However, all the passive tutor dialogs last displayed are still visible on the
screens. Since the clipboard was the last passive tutor dialog displayed in your case, it is
still visible even though you are back in the troubleshooting mode.

After returning to the troubleshooting mode, call up the feedwater-schematic and
investigate the distillate-tank. You will once again be able to view gauges attached to the
investigated component which was not possible when you were interacting with the tutor.
Now if you probe the level gauge on the distillate-tank and find it to be abnormal you will
notice that this information is posted on the still visible extended clipboard. Even if you

325

find that the reading is normal, you will notice that your diagnostic findings get recorded
on the extended portion of the clipboard. This happens because VYASA considers this test as
a significant troubleshooting clue. With the passage of time, you will notice that a red
marker appears next to the distillate-tank's level gauge reading on the extended clipboard.
This marker will disappear after some time only to reappear a little later. Such a behavior
is an indication that the level gauge reading on the distillate-tank is fluctuating.

You can also obtain useful information concerning the current mode of failure from the
clipboard. When you have conducted enough diagnostic tests that match the typical
abnormal behavior associated with a particular mode of failure, the tutor posts a message
on the clipboard. You are informed of the mode of failure that you should suspect based on
the test results obtained by you thus far. For example, if for the current failure you
investigate the deaerating-feed-tank and find its level to be high, you will notice that
"blocked-shut" appears as the most likely mode of failure on the clipboard. This mode of
failure is inferred from the two gauge readings you have observed thus far: a high
feedwater level in the deaerating-feed-tank and a low feedwater level in the steam drum.
Your knowledge of blocked-shut mode of failure should help you infer that the failed
component lies between the deaerating-feed-tank and the steam-drum in the feedwater
path.

If you are not sure of the components that lie between the tank and the drum in the feedwater
path you may want to inquire about it from the tutor. Fluid path information is part of
system knowledge. You can seek this information from the tutor by directly selecting the
system button in the displayed help-levels dialog instead of invoking the tutor via the stop
icon. However, notice that your action has the same effect on the cursor shape and the
background colors of stop and resume icons as you would expect when you invoke the tutor
via the stop icon. After you have found the fluid path information you were seeking you can
get back into the troubleshooting mode by clicking on the resume icon.

VYASA is currently functioning in the active mode but since you have not yet given any
reason to suspect a misconception it has not intervened in your ‘roubleshooting process.
Active intervention from VYASA occurs only when it infers possible misconceptions and
none has been indicated thus far by your actions. To demonstrate some of the capabilities of
VYASA in the active mode, we will now deliberately mislead you into taking actions that
indicate some serious misconceptions.

VYASA in Active Mode:

VYASA in the active mode will often intervene to communicate with you. It does this
through instructions presented on the communication dialog, accompanied by a beep.
These instructions are displayed for a short period of time and therefore you must read
them immediately. If your future actions indicate that you have not followed the
instructions, the tutor will continue to provide you with more instructions.

To see some of the instructions VYASA 1is capable of providing, switch to the control-air-
schematic and conduct an investigative action. VYASA will intervene and tell you that
you are investigating a schematic unaffected by the failure and therefore you are not likely
to obtain any useful diagnostic information from this schematic. If you continue to
investigate more components in the control-air-schematic, the tutor will keep repeating the
same instructions.

If you now switch to the steam-schematic and investigate the hp-regulator and the Ip-
regulator, the tutor no longer tells you that you are in the wrong schematic. But if you

326

investigate the lp-reducing-station, lp-dump-regulator and the ip-extraction-regulator
which are all in the auxiliary steam use subsystem, the tutor informs you that you are
investigating an unaffected subsystem. This information should help you concentrate
your search for the failed component elsewhere.

In addition to guiding you with instructions as described, the tutor is capable of helping you
with your hypotheses. When the tutor finds that you have conducted enough investigative
and informative tests it will ask you for a list of components that you suspect are
responsible for the abnormal system behavior. If you desire, you may even provide the tutor
with hypotheses even before it asks for it. In both cases, you can then ask for help from the
tutor on a specific hypothesis. All communications with VYASA concerning failure
hypotheses is carried out via the hypothesis menu.

Hypothesis Menu

Hypothesis menu, shown in Figure 21, appears below the requests menu on the large
monitor. It has four buttons. The "View" button is used to view the list of hypotheses you
have provided the tutor. The "Add" button is used when you want to specify a new
hypothesis. The "Delete” button is used to remove a hypothesis from a list of hypotheses.
Hence the delete button gets highlighted only after you have provided your first set of
hypotheses. Finally, the "Advice" button is used to seek help concerning a particular
hypothesis.

Hypothesis

)

Figure 21. Hypothesis Menu

Click on the "Add" button to learn how you communicate your failure hypotheses to the
tutor. After you have clicked on the add button, you are required to select the component that
you suspect is responsible for the current abnormal system behavior and also pick the mode
in which you suspect the component to have failed. You first select the component and then
you will be prompted to select a failure mode. When adding hypothesis, either on request
from the tutor or on your own, the action of selecting the suspected component is identical to
the investigative action in the troubleshooting mode. You remain in the mode of adding
hypothesis until you click on the "Done" button in the communication dialog. After you
click on the done button you get back to the troubleshooting mode. It is, however, considered
an error to click on the "Done” button without providing a single hypothesis if you have
been asked for your hypotheses by the tutor.

Go ahead and provide your hypotheses concerning failure based on the diagnostic
information you have thus far. Click on the done button when finished. Now use the view,
advice and delete buttons in that order to become familiar with what they do. The
interaction with the tutor to delete a hypothesis or to seek advice is straightforward. The
tutor prompts you for every action through the communication dialog and you should not
have any problems seeking help from the tutor.

By now you have been introduced to all the features of the instructional system. You may
freely interact with it for a while till the session ends. If you have any questions, feel free to
ask.

In this session you are not provided with the solution to the problem unless you happen to
diagnose it on your own. However, in the rest of the sessions the solution will be provided to
you at the end of the session. The solution will be supplemented with explanations for
abnormal behavior of individual gauges. The explanation should help you form a causal
model of fault propagation. Since these explanations can help improve your performance
in subsequent sessions, you are recommended to pay attention to them.

This section has introduced you to all your valid interactions at TURBINIA-VYASA
interface. You are now familiar with all the features of the computer-based tutor. You will
be using this tutor in subsequent sessions to learn the task of troubleshooting a simulated
marine power plant. Your valid interactions with the instructional system described thus
far are briefly summarized in the next section. Following the summary is a description of
how your performance will be measured.

S f Valid Acti

Provided below is a list of actions that you will perform while interacting with TURBINIA-
VYASA.

Call-for-schematic-action: This is an action you perform to call a new schematic or switch
between schematics. There are two ways this may be done. You can either click on an icon
in the schematic menu that represents the schematic you want to view, or, if a schematic is
currently displayed, click on a similar icon in the schematic itself. If you are
investigating components along a suspected path in a schematic that ends up in an icon,
you may prefer to use the icon in the schematic itself to switch to a new schematic. By using
the icon in the schematic, a highlighted icon in the new schematic properly orients you to
continue investigations along the suspected path.

Investigative-action: During your entire period of interaction with the marine power plant
simulator, you are either in troubleshooting or in diagnose mode. When in troubleshooting
mode, your action of clicking on the mouse button with cursor on a selected component
constitutes an investigative-action. You perform investigative-action to view all gauges
attached to the input and output sides of the component being investigated. A new
investigative-action always makes the displayed gauges and the gauge readings of the last
investigated component disappear from the screen. When no gauges are displayed in
response to an investigative-action, it implies that the component investigated has no
gauges attached to it.

Informative-action: The gauges displayed following an investigative-action, when
probed, display the gauge reading. The action of probing displayed gauges by clicking the
mouse on the gauge is called an informative-action.

Diagnose-request-action: This action is performed to switch from the troubleshooting mode
to diagnose mode. You perform this action when you are prepared to indicate your
diagnosis. Clicking on the mouse button after selecting the diagnose icon in the requests
menu constitutes a diagnose-request-action.

Diagnostic-action: Diagnostic-action is performed following the diagnose request action.
In diagnostic-action you select the component that you suspect is responsible for the
observed abnormal system behavior. In indicating your diagnosis, you select the
component in the same manner as you do when investigating the component. Thus,
diagnostic-action is an investigative-action in diagnose mode.

Modal-dialog-action: Modal dialogs deactivate the mouse in regions outside the dialog
box. Before the mouse button can be reactivated for regions outside the modal dialog box,
you are required to terminate interaction with the modal dialog. Terminating interaction
with a modal dialog requires selecting a button dialog item. The action of selecting the
button dialog item in the displayed modal dialog is called modal-dialog-action. Symptom
display dialog and error dialogs are examples of modal dialog that require modal-dialog-
actions.

Help-request-action: The action of clicking on the stop icon to halt the simulation and
invoke the passive tutor is called the help-request-action. Once the help-levels dialog is
displayed on the screen you will probably never need to access the passive tutor through the
stop icon. After seeking help from the passive tutor the first time you will be able to

communicate with it again by selecting any of the highlighted items in any of the
displayed passive tutor dialogs.

Resume-request-action: Every time you initiate interaction with the tutor it is your 4

responsibility to bring the system back to the troubleshooting mode before you can continue

with diagnosis. The action of clicking on resume icon to get back to the troubleshooting

mode, after you have completed interaction with the tutor, is called resume-request-action.

Tutor-dialog-action: All actions that involve clicking on highlighted items in passive and °

active tutor dialogs are called tutor-dialog-actions. Most tutor-dialog-actions are taken

with the cursor in the shape of a "?".
o
®
o
@
®
o
®

Although your ultimate goal is to identify the failed component responsible for abnormal
system behavior, your performance is affected by other factors. This section will discuss
these factors so that you have a better feel for what is expected of you.

Correct diagnosis: Successful fault diagnosis is the most important measure of your
troubleshooting ability. However, since the problems are tough, your inability to solve
problems has to be evaluated in conjunction with other factors.

Troubleshooting time: The total amount of time taken for troubleshooting is an important
performance measure for those who successfully solve the problem. Those who solve the
problems in less time have a better performance rating.

Number of relevant actions: Even though every informative action has some

informational content, some have more relevance than others for the failure being
investigated. Also, there is a minimum number of relevant informative actions necessary
to diagnose each failure. The number of relevant informative actions past this minimum
number taken to solve a problem is a measure of diagnostic performance. Smaller number
of relevant informative actions required to correctly diagnose the fault implies better
performance.

Number of irrelevant actions: The informative actions that have no relevance to the
current problem are said to be irrelevant. The larger the number of such irrelevant
informative actions during your troubleshooting exercise, the worse is the diagnostic
performance.

Number of incorrect diagnosis: You are penalized any time you make an incorrect
diagnosis. However, the penalty depends upon the component incorrectly identified as
failed. At any stage during the troubleshooting process there are likely candidates for
failed component based on the observed abnormal system states. The likelihood that a
component may have failed increases or decreases as you conduct more diagnostic tests.
Selecting a likely component as the cause of abnormal system behavior does not penalize
you as much as picking a component that cannot have failed. Therefore, even though your
performance is adversely affected by an incorrect diagnosis, it is considered worse if the
suspected component cannot have failed based on the symptoms at the time you express the
diagnosis.

Investigation of unaffected schematics: For each failure, there are only few schematics,
subsystems and fluid paths that are affected. Affected schematics are those schematics that
have gauges with abnormal readings. Investigating components in schematics that are
unaffected by the failure reflects the inability on your part to relate the symptoms to the
correct structural location of the power plant. Thus, investigating components in
unaffected schematics reduces your performance rating. Continuing to investigate
unaffected schematics in spite of the guidance provided by the tutor makes the performance
worse.

Investigation of unaffected subsystems: Like the schematics, investigating components in
subsystems unaffected by failure reduces your performance rating and repeating the
mistake in spite of the tutor's guidance makes it worse.

Investigation of unaffected fluid paths: Once again, like the previous two factors,
investigating components in unaffected fluid paths harm your performance and repeating
the mistake in spite of the tutor's guidance makes it worse.

This manual has guided you through your first session, made you familiar with
TURBINIA-VYASA, and has described how your performance will be measured during
the experiment. From the next session, you will begin your formal training. VYASA will
help you to learn to troubleshoot marine power plants efficiently.

Since it is vital for my experimental results, you are requested not to discuss any aspect of
this experiment with other subjects.

GOOD LUCK!

APPENDIX B

SUBJECT CONSENT FORM

HUMAN SUBJECT CONSENT AND RELEASE FORM

Intelligent Tutoring for Diagnostic Problem Solving
in
Complex Dynamic Systems

1. Iunderstand that the following procedure is to be observed: I will troubleshoot a failure
in a simulated marine power plant using the diagnostic information I gather from the dual
screen Apple Mac II workstation. In order to gather the diagnostic information

concerning the system and its state I will call up various schematics, click on objects
displayed in the schematics and read messages. I will interact with the simulated system
using only a singic button mouse. I will occasionally hear a "beep” to draw my attention to
some significant events. I may have a computer-based instructor aid me in
understanding the domain and/or the task in some of the sessions. When I am told that the
computer-based instructor is present in the passive mode alone, I will be responsible for
taking the initiative to interact with it via the available menus. I may, in some sessions,
also have the computer-based instructor evaluate my misconceptions based on my actions.
When my actions indicate a possible misconception, the computer-based instructor may
intervene to provide me with instructions or advice.

2. IT'understand that the risks due to participation in this experiment do not exceed those of
normal office work or those encountered in using computers as part of courses at Georgia
Tech.

3. Tunderstand that the expected benefits of the experiment is to evaluate the design of a
computer-based instructional system for diagnostic problem solving in complex dynamic
domains.

4. I volunteer to participate in twelve experimental sessions lasting approximately one
hour each. The twelve experimental sessions may last four to five weeks. I understand
that I will be paid $3 per session for the sessions completed. I understand that I can resign at
any time during the course of the experiment and get paid for any time spent participating
in the experiment. If I complete all twelve sessions, I will receive a total of $72, including a
bonus of $36 for participation in the entire experiment, upon completing the twelfth session.

5. I understand that there are no alternative procedures that would be advantageous to me.

6. I understand that any reference to my performance will identify me by subject number
rather than by my name. If the protocol requires it, I give my permission for the release of
these records.

7. I understand that I may make inquiries concerning this procedure. The person to
contact is Dr. T. Govindaraj in Room 333, ISyE building, phone x4-3873, or Vijay
Vasandani in Room 337, ISyE building, phone x4-4322.

8. Reports of injury should be made to the principal investigator. I understand that neither
the Georgia Institute of Technology nor any Georgia Tech personnel has liability and
neither has made provision for payment of costs associated with any injury resulting from
participation in this study.

9. I'have read and understand the procedures involved and hereby consent to volunteer to
participate in this study.

Subject's Signature Date Investigator's Signature
Date

SSN: -— - P.O.B.

APPENDIX C

SURVEY FORM

Survey Form

Name: SSN:

P. O. Box: Phone:

1. Your current class status (i.e. Junior, Senior etc):

2. Have you had some training on ship? Yes __ No__
Ship type: Oil-fired ___ Nuclear ___ Other ___

3. Have you had some introductory course in Thermodynamics? Yes __ No __

4. If you have had more than 1 course in Thermodynamics, list how many:

5. Have you ever used a PC for word processing, programming or spreadsheet applications?

Yes ___ No___
If your answer to 5 was yes, please continue. Otherwise skip to question 8.
6. How often and for what do you use the computer?
Word-processing hours/week
Programming hours/week
Spreadsheet hours/week
Other hours/week
7. How do you interact with your applications?
Mouse or other pointing device Yes _~ No_
Keyboard Yes _ No___
Both mouse and keyboard Yes __ No __
8. Please rank your experience as a computer user:
Novice ___ QOccasional _ _ Frequent ___ Hacker ___

APPENDIX D

QUESTIONNAIRES

Questionnaire 1 (and 2)

Subject ID:

1. Name the 4 stages of the closed loop steam cycle in a marine power plant

2. What is the function of each of the following in a marine power plant

boiler:

economizer:

condenser:

superheater:

turbine:

3. What is the relationship between the following sets of temperatures in the heat-

exchanger shown below. Circle the appropriate equality/inequality.

Steam
T1
Condenser
™ 3
A
Sea Water
Condensate Sea Water
T1 < > = ™
™ < > = T
T3 < > - ™

where, < :lessthan; and > : greater than

4. Which out of the following are heat-exchangers:

boiler Yes ___ No ____
condenser Yes ____ No
turbine Yes ___ No ____
superheater Yes ___ No __
economizer Yes No

5. Make 6 valid pairs choosing one element of each pair from column X and the other from
column Y. For example, a valid pair can be expressed as (f) (6).

Column X Column Y Valid Pair
(a) excess combustion air (1) black smoke

(b) insufficient heating of fuel-oil (2) incomplete combustion

(c) rich fuel-air mixture (3) white smoke
(d) excess fuel-oil (4) pre-ignition
(e) overheated fuel-oil (5) black smoke
(f) boiling water (6) steam

6. Apart from power generation, name a few other uses of steam is a marine power plant.

7. Name a one major difference between saturated and superheated steam.

8. What is latent heat?

9. Name the fluids flowing through a boiler?

10. When the speed of the ship is increased, which of the following will increase, decrease

or remain unchanged:

feed-water flow into boiler increase decrease unchanged
combustion air flow to burner increase decrease unchanged
steam flow out of boiler increase decrease unchanged
feed-water level in steam drum increase decrease unchanged
fuel-oil flow into burner increase decrease unchanged

340

11. When the speed of the ship is increased, will the regulator "R" be opened or closed with

respect to its current setting:

Tank

Opened
Closed

_@

Feed-water

Steam <@—

Flue-gas

Flue-gas

12. If the command to open/close regulator "R" is not followed when the ship's speed is

increased, the following gauges will show abnormal/normal readings:

Feedwater level gauge L

1 above normal

Feedwater level gauge L2 above normal

Steam pressure gauge P

above normal

Feedwater temperature gauge T above normal

normal
normal
normal

normal

below normal
below normal
below normal

below normal

13. If rate of flow of steam Qs is greater than rate of flow of water Qw from the steam drum

in the figure above, what happens to the pressure gauge (P) reading:

rises

falls

remains unchanged

Questionnaire 3

Subject ID

1. When vacuum in the condenser is low, does the Ip-turbine exit temperature get affected?

If so, how and why?

2. Which of the following can cause black smoke:
(a) insufficient fuel
(b) inadeqate heating of combustion air
(¢) excess air
(d) inadeqate heating of fuel oil
(e) insufficient air
() overheated fuel

(g) excess fuel

3. What causes white smoke?

4. If fuel oil temperature is low, it could be because of a malfunctioning
(a) fuel-oil-heater
(b) fuel-oil-heater-steam-regulator (fohs-regulator)

(¢) fuel-oil-heater-steam-trap (fohs-trap)

5. What is the function of
(a) attemperator

(b) atomizing steam reducing station (asr-station)

(c) atmos-drain-tank-level-transmitter (1t)

6. In which schematics are the following components:

(a) ac-valve

(b) condenser

(c) hp-heater

(d) fp-turbine (feed-pump-turbine)

7. When saturation pressure in the steam drum decreases, what does the automatic boiler

control mechanism do?

8. Provide 3 expected abnormal gauge readings when

(a) condensate recirculation valve is stuck open

(b) sea strainer in the main-condenser-cold-fluid-path is blocked shut

9. Provide 2 expected abnormal level gauge readings when

(a) feed-water-regulator is blocked shut

(b) boiler-tubes are leaking

10. Does a blocked shut condensate pump explain the following

(a) high level in hot-well Yes No
(b) low vacuum in condenser Yes No
(¢) normal cpd-valve pressure Yes No

If you were in Group I answer only questions 11 through 16. Others may skip questions 11-16.

11. What percentage of time were you sure about a failure before submitting the diagnosis

and what percentage of time were you guessing?

12. What was the average number of guesses made per problem?

13. Have you become a better troubleshooter after participating this training program? Why

cr why not?

14. Did the training program teach you something about the system? If so what?

15. Describe the troubleshooting strategy you developed?

16. Were you satisfied with your training program? If not, what was missing?

17. How often did you use the tutor during training?
little alot
1 2 3 4 5

18. Did the tutor help you solve problems?

hindered neutral helped
1 2 3 4 5

19. What percentage of problems in the training sessions did you solve with the aid of the
tutor?
less than 25% 25-50% 50-75% above 75%

20. Were some aspects of the tutor more helpful than the others? Which ones and why?

21. Did the tutor teach you the functions of the components in the power plant?

22. Were the explanations at the end of the session helpful? If yes how? If not why not?

23. Did the tutor confuse you? If so, what was the confusing aspect of the tutor?

24. Describe the troubleshooting strategy you developed?

47

25. What percentage of time were you sure about a failure before submitting the diagnosis

and what percentage of time were you guessing?

26. What was the average number of guesses made per problem?

27. Did the training program teach you something about the system? If so what?

28. Have you become a better troubleshooter after participating this training program? Why

or why not?

29. Did the tutor help you discriminate/test your hypothesis?

30. Based on your performance in the test sessions, would you say that the training made

you very dependent on the tutor to solve the problems.

APPENDIX E

SAMPLE COMPUTATIONS OF TEST STATISTICS - 1

Sample Computations

In this Appendix, computations of test statistics used for data analysis are shown with the
help an example. These sample computations will give readers a feel for the steps involved

in analyzing data using a mixed model.

Data for one performance measure is analyzed here. The performance measure chosen for
this purpose is Percentage of Guesses (i.e., % of incorrect diagnoses that were considered
guesses). The Table below shows the mean values for percentage of guesses obtained from

the experimental data.

Seen Status
Training Seen Once Seen Twice Unseen
Condition (20 Problems) (30 Problems) (50 Problems) Mean
Simulator 76.20% 66.00% 71.35% 71.40%
Passive-Tutor 43.50% 12.19% 40.00% 35.23%
Active-Tutor 17.64% 14.28% 38.77% 29.50%
Mean 52.20% 32.90% 52.16%

351

Type III Expected Mean Squares Expressions computed by SAS (General Linear Model) for
a mixed model with seven sources of variations, three fixed and four random, are shown
in Table A.

Table A.
Source of Variation Type III Expected Mean Squares Expression
Cond Var (error)
(Fixed Factor) + 3.086937 Var (Subj*Seen(Cond))

+ 10 Var (Cond*Prob(Seen))
+ 9.19524309 Var(Subj(Cond))
+ Q (Cond, Cond*Seen)

Seen Var (error)

(Fixed Factor) + 3.1 Var (Subj*Seen(Cond))
+ 10 Var (Cond*Prob(Seen))
+ 30 Var (Prob(Seen))

+ Q (Cond, Cond*Seen)

Cond*Seen Var (error)

(Fixed Factor) + 3.1 Var (Subj*Seen(Cond))
+ 10 Var (Cond*Prob(Seen))
+ Q (Cond*Seen)

Subj(Cond) Var (error)
(Random Factor) + 2.9032258 Var (Subj*Seen(Cond))
+ 8.709677 Var (Subj(Cond))

Prob(Seen) Var (error)
(Random Factor) + 10 Var (Cond*Prob(Seen))
+ 30 Var (Prob(Seen))

Cond*Prob(Seen) Var (error)
(Random Factor) + 10 Var (Cond*Prob(Seen))

Subj*Seen(Cond) Var (error)
(Random Factor) + 3.1 Var (Subj*Seen(Cond))

The ANOVA table as computed by SAS for percentage of guesses is shown below

Source of
Variation daf MS F
Cond 2 1.672 | 18.09
Seen 2 2.326 | 25.17
Cond*Seen 4 0.070 0.76
Subj(Cond) 21 0199 | 216
Prob(Seen) 7 0.287 | 3.11
Cond*Prob(Seen)| 14 0.040 | 043
Subj*Seen(Cond) | 54 0.093 1.01
Error 189 0.092

The F statistics computed in the ANOVA table by SAS are all based on the error term.
However, Table A shows that not all mean squares expressions computed by SAS are
independent. Therefore, these statistics could not be used to determine the significance of
effects considered in the experimental design. Computations of test statistics that were used
to determine the significance of main and interaction effects on the percentage of guesses

provided by the subjects is shown below.

Computation of test statistics:

Random effects

(1) To test if variance due to Subj*Seen{Cond) effect is significant

The statistic to test this hypothesis using the expected mean squares expression in Table A

is

F = MSSUBJ*SEEN(COND) / MSERROR = 0.0933/0.09244 =1.01

Therefore we can accept the hypothesis that Var (Subj*Seen(Cond)) = 0

Substituting Var (Subj*Seen(Cond)) = 0 in Expected Mean Squares Expression in Table A
we get Table B for the remaining factors.

Table B.
Source of Variation Type III Expected Mean Squares Expression
Cond Var (error)
(Fixed Factor) + 10 Var (Cond*Prob(Seen))

+ 9.19524309 Var(Subj(Cond))
+ Q (Cond, Cond*Seen)

Seen Var (error)

(Fixed Factor) + 10 Var (Cond*Prob(Seen))
+ 30 Var (Prob(Seen))

+ @ (Cond, Cond*Seen)

Cond*Seen Var (error)
(Fixed Factor) + 10 Var (Cond*Prob(Seen))
+ Q (Cond*Seen)

Subj(Cond) Var (error)
(Random Factor) + 8.709677 Var (Subj(Cond))

Prob(Seen) Var (error)
(Random Factor) + 10 Var (Cond*Prob(Seen))
+ 30 Var (Prob{(Seen))

Cond*Prob(Seen) Var (error)
(Random Factor) + 10 Var (Cond*Prob(Seen))

(2) To test if variance due to Cond*Prob(Seen) effect is significant

The statistic to test this hypothesis using the expected mean squares expression in Table B

. *
18

F = MSCOND*PROB(SEEN) / MSERROR = 0.0399 / 0.09244 = 0.43

Therefore we can accept the hypothesis that Var (Cond*Prob(Seen)) = 0

* Note that eliminating the Var (Subj*Seen(Cond)) term from the expected mean squares
expressions when MSSUBJ*SEEN(COND)/MSERROR is 1 or less than 1 can only lead to a
more conservative estimate of F statistic.

Substituting Var (Cond*Prob(Seen)) = 0 in Expected Mean Squares Expression in Table B
we get Table C for the remaining factors.

Table C.
Source of Variation Type III Expected Mean Squares Expression
Cond Var (error)
(Fixed Factor) + 9.19524309 Var(Subj(Cond))
+ Q (Cond, Cond*Seen)
Seen Var (error)
(Fixed Factor) + 30 Var (Prob(Seen))
+ Q (Cond, Cond*Seen)
Cond*Seen Var (error)
(Fixed Factor) + Q (Cond*Seen)
Subj(Cond) Var (error)

(Random Factor) + 8.709677 Var (Subj(Cond))

Prob(Seen) Var (error)
(Random Factor) + 30 Var (Prob(Seen))

(3) To test if variance due to Prob(Seen) effect is significant

The statistic to test this hypothesis using the expected mean squares expression in Table C

is

F = MSPROB(SEEN)/ MSERROR = 0.0287/0.09244 = 3.11
and

F (7,189, 0.05)=2.0
Therefore we have to reject the hypothesis that Var (Prob(Seen)) = 0
Var(Prob(Seen)) = MSPROB(SEEN) / 30 - MSCOND*PROB(SEEN) / 30

=0.287/30-0.0399/30
=0.0082

(4) To test if variance due to Subj(Cond) effect is significant

The statistic to test this hypothesis using the expected mean squares expression in Table C

is

F = MSSUBJ(COND)/MSERROR = 0.199/0.09244 = 2.16
and
F (27,189, 0.05)=1.53

Therefore we have to reject the hypothesis that Var (Subj(Cond)) = 0

Var (Subj(Cond)) = MSSUBJ(COND) / 8.7096 - MSSUBJ*SEEN(COND) / 8.7096

=0.199/8.7096 - 0.0933/8.7096

=0.012

Fixed effects

(5) To test the hypothesis that means values for percentage of guesses are equal for all

levels of Cond*Seen interaction effects

The statistic to test this hypothesis using the expected mean squares expression in Table C

is

F = MSCOND*SEEN / MSERROR = 0.0701 / 0.09244 = 0.76

Therefore we accept the hypothesis that the means are equal and the Cond*Seen effect is not

significant

(6) To test the hypothesis that mean values for percentage of guesses are equal for all levels

of seen status

The statistic to test this hypothesis using the expected mean squares exoression in Table C

is

F = MSSEEN / MSPROB(SEEN) = 2.3267/ 0.287 = 8.1
and

F(2,7,0.05)=4.74

Therefore we reject the hypothesis that the means are equal. That is, mean values of
percentage of guesses for problems seen once, problems seen twice and unseen problems

are not the same.

By determining confidence intervals for the three means we can do a multiple comparison
of means and determine which means are different. The three estimates of means are
52.2% (for problems seen once), 32.9% (for problems seen twice) and 52.16% (for unseen

problems).

Although for multiple comparison an estimate of variance of means is required, the
analysis done here used the error term as the estimate of variance of means. Confidence
intervals for each of the three means was computed using MSERROR.

95% Confidence Interval for mean(seen once) :

0.522 - 1.96 * {(0.09244 / 60)] ** 0.5 < mean(seen once) < 0.522 + 1.96 * [(0.09244 / 60)] ** 0.5
where,

t (0.05, 189) = 1.96, MSERROR = 0.09244 and number of problems seen once = 60

or 0.522 - 0.0769 < mean(seen once) < 0.522 + 0.0769
0.445 < mean(seen once) < 0.5989

95% Confidence Interval for mean(seen twice) :

0.329 - 1.96 * [(0.09244 / 90)] ** 0.5 < mean(seen twice) < 0.329 + 1.96 * [(0.09244 / 90)] ** 0.5

b7

where,
t (0.05,189) = 1.96, MSERROR = 0.09244 and number of problems seen twice = 90

or 0.329 - 0.0628< mean(seen twice) < 0.329 + 0.0628
0.2662 < mean(seen twice) < 0.3918

95% Confidence Interval for mean(unseen) :

0.5216- 1.96 * [(0.09244 / 150)] ** 0.5 < mean(unseen) < 0.5216 + 1.96 * [(0.09244 /150)] ** 0.5
where,
t (0.05, 189) = 1.96, MSERROR = 0.09244 and number of unseen problems = 90

or 0.5216 - 0.04865 < mean(unseen) < 0.5216 + 0.04865
0.4729 < mean(unseen) < 0.57025

It is clear from the analysis that mean(seen twice) is different from mean(seen once) and

mean{unseen).

(7) To test the hypothesis that mean values for percentage of guesses are equal for all three

training conditions

The statistic to test this hypothesis using the expected mean squares expression in Table C

s

F = MSCOND /MSSUBJ(COND)=1.6724/0.199 = 8.4
and
F (2,27, 0.05) = 3.35

Therefore we reject the hypothesis that the means are equal. That is, mean values of

percentage of guesses from subjects in the three training conditions are not the same.

By determining confidence intervals for the three means we can do a multiple comparison
of means and determine which means are different. The three estimates of means are
71.4% (simulator), 35.23% (passive tutor) and 29.5% (active tutor).

Although for multiple comparison an estimate of variance of means is required, the
analysis done here once again uses the error term as the estimate of variance of means.

Confidence intervals for each of the three means was computed using MSERROR.

95% Confidence Interval for mean(simulator) :

0.714 - 1.96 * [(0.09244 / 100)] ** 0.5 < mean(simulator) < 0.714 + 1.96 * [(0.09244 / 100)] ** 0.5
where,

t (0.05, 189) = 1.96, MSERROR = 0.09244 and number of problems = 100

or 0.714 - 0.059 < mean(simulator) < 0.714 + 0.059
0.655 < mean(simulator) < 0.773

95% Confidence Interval for mean(passive tutor) :

0.3523 - 1.96 * [(0.09244 / 100)] ** 0.5 < mean(passive tutor) < 0.3523 + 1.96 * [(0.09244 / 100)] ** 0.5
where,

t (0.05,189) = 1.96, MSERROR = 0.09244 and number of problems = 100

or 0.3523 - 0.059 < mean(passive tutor) < 0.3523 + 0.059
0.2933 < mean(passive tutor) < 0.4113

95% Confidence Interval for mean(active tutor) :
0.295 - 1.96 * [(0.09244 / 100)] ** 0.5 < mean(active tutor) < 0.295 + 1.96 * [(0.09244/100)] ** 0.5
where,

t (0.05,189) = 1.96, MSERROR = 0.09244 and number of problems = 100

or 0.295 - 0.059 < mean(active tutor) < 0.295 + 0.059
0.236 < mean(active tutor) < 0.354

It is clear from the analysis that mean(simulator) is different from mean(passive tutor)

and mean(active tutor).

APPENDIXF

SAMPLE COMPUTATIONS OF TEST STATISTICS - I

Sample Computations

In this Appendix, sample computations for pairwise comparison of proportion of premature
diagnosis made by subjects in each of the three training conditions are presented. Details
of the method used here to compare proportions are described in Hines and Montgomery
(1990). The Table below shows the mean values for premature diagnosis obtained from the

experimental data.

Premature Diagnosis (Proportion of of Solved Problems)

Seen Status
Training Seen Once Seen Twice Unseen
Condition (20 Problems) (30 Problems) (50 Problems) Mean
Simulator 219 2/28 21/46 25/93
Passive-Tutor 0/19 0/30 14/46 14795
Active-Tutor 019 0/28 8/41 8/88
Mean 2/57 2/86 43/133

Each correct diagnosis provided by the subject can be grouped into one of the three
categories: premature, timely or overdue.

Let X1 be the number of premature diagnoses provided by subjects in the simulator group,
N1 be the number of problems solved by this group and P1 be the proportion of correct
diagnoses that are premature (i.e., X1 / N1).

Let X2 be the number of premature diagnoses provided by subjects in the passive tutor group,
N2 be the number of problems solved by this group and P2 be the proportion of correct
diagnoses that are premature (i.e., X2 / N2).

Let X3 be the number of premature diagnoses provided by subjects in the active tutor group,
N3 be the number of problems solved by this group and P3 be the proportion of correct
diagnoses that are premature (i.e., X3 / N3).

We are interested in making pairwise comparison of proportions P1, P2 and P3 to see if
they come from the same distribution. To test the hypothesis that P1 = P2, we can use the Z
statistic given by

Z=P1-P2/[PQ-P)(1/N1+1/N2)]**0.5
where,
P =(X1 +X2)/(N1 + N2)

Substituting the values from the data table we get

P=(25+14)/(93 + 95)=0.20
and
Z2=(25/93-14/95)/(020(1-020)*(1/93+1/95)]**0.5
=2.07

Similarly, the Z statistic for comparing P1 and P3 can be also be computed as follows

Z=P1-P3/[P1-P)(1/N1+1/N3)]**0.5
where,
P =(X1 +X3)/(N1 +N3)

Substituting the values from the data table we get

P=(25+8)/(93+88)=0.18
and
Z=(25/93-8/88)/{0.18(1-0.18)*(1/93+1/88)]** 05
=311

And, the Z statistic for comparing P2 and P3 can be also be computed as follows

Z=P2-P3/[{P(1-P)(1/N2+1/N3)]**0.5
where,
P =(X2+X3)/(N2+N3)

Substituting the values from the data table we get

P=(14+8)/(95+88)=0.12
and
Z=(14/95-8/88)/(012(1-0.12)*(1/95+1/88)]** 0.5
=1.19

Now, Z(0.95) = 1.65. Therefore, we can say that at a value of 0.05, P1 is different from P2
and P3 but P2 is not significantly different from P3.

The analysis of other two categories of diagnosis: timely and overdue can also be done in
the same manner. Also, the analysis to compare performance in terms of premature,
timely and overdue diagnosis for the three levels of seen status can be conducted as

described above.

APPENDIX G

SOME COMMENTS FROM SUBJECTS

Some of the comments collected from subjects who participated in the experiment are
presented in this Appendix. These comments were gathered during the ten training
sessions. Subjects trained on the simulator (Group I) were assigned a code number
beginning with 1. Subjects trained with the passive tutor (Group II) and those trained with
the active tutor (Group III) were assigned codes beginning with 2 and 3 respectively.

Group1

Subject 101: Doesn't make sense how pressure could be low. Wish it explained why.

Subject 102: Couldn't find the (faulty) component simply because I did not know what the

asr station was; I found it almost by chance. I often end up picking the bad component on a

guess.

Subject 103: There are no references to pieces of equipment that I don't understand. I wish

there was.

Subject 104: I need to know more about some of these components and what the purpose of
these components. Sometimes I have a hard time following these fluid paths. All arrows

are alike and it gets confusing.

Subject 105: I am unfamiliar with small obscure parts. Can somebody not tell me what they
do. I need to pay more attention to what I guess because the solution was a component that I

could have sworn I had picked earlier.

Subject 106: Still having problems figuring out the purpose of the component.

Subject 107: I wish I could tell what type of fluid the arrows represented and how they
actually flow through the component. Piping systems on Navy vessels are color coded.
Often wish for input on the interrelationship between various subsystems. Where is the
recirculation regulator. Could not find it. Wish it was possible to view all the affected

gauges simultaneously. Would be nice if the solution listed some explanations.

Subject 109: Could be little more descriptive, could give us all possibilities to a certain
problem. A glossary explaining briefly the functions of the components would be helpful. I

wish there was a way to show all abnormal readings.

Subject 110: It is difficult not knowing what some of the components do. It is also
frustrating not to see the schematics when the solution is told. However, the program is

very easy to use and I have no problems with the operation of.

Group I

Subject 201: I learned the control mechanisms responsible for much of the secondary

effects. I need to keep the tutor in the mode where I can see the affected gauges. It helps me.

Subject 202: Tutor was helpful in showing me what the functions of the components were so I

improved my chances of solving the problems.

Subject 203: This set-up is very easy to work with after a couple of days of practice. It helps
me understand how one component can affect so many others. It is good that the passive
tutor does not lead me to the solution but provides me with a chance to learn about the system

on my own. This tutor has familiarized me to the propulsion system.

Subject 2u5: Current failures is very useful. It eliminates the need to write down the gauge

readings. It provides information that is most useful in solving problems.

Subject 206: The tutor became increasingly helpful after I learned the most effective way of
using the information it gives. Only complaint is that the highlighted subsystems and
fluid paths should remain highlighted after I start investigations again.

Subject 207: The mouse is the best part of the system. Also, the passive tutor is very helpful
in the failures mode. It gives me the opportunity to see when the gauges change as the

problem propagates through the system.

Subject 208: I use the tutor a lot. It helps me understand the functions of the components. The
current failures help me a lot to keep track of affected gauges.

Subject 209: Tutor is very convenient to use. Current failures mode is very useful.

366

Group Il

Subject 301: I like passive tutor. I use it a lot. Like fluid paths, functions and current

failures features. I like to check my hypothesis using active tutor.

Subject 303: The explanations at the end of each problem shows step by step what went wrong
and provides helpful information that can be used in later problems. When the clipboard
displays the message that something is blocked shut it would be nice if it beeped.

Subject 304: Tutor's explanation of the problems and hypothesis testing were very helpful.
Subject 306: Tutor is a great help. Helped me solve many problems. It assisted me in
finding out what was not malfunctioning. It also explained the problems. Towards the end

of the training sessions I tried to stay away from the tutor.

Subject 307: The tutor helps me evaluate all possible component failures. But, I am afraid I

may have become too dependent on the tutor.

Subject 308: The tutor tends to increase your ability to discriminate among choices. It is

very helpful in letting you know if your hypothesis is implausible.
Subject 309: Hypothesis testing is a great feature. It always helps me find the fault.
Subject 310: Good index of components and their functions. Ability to see affected gauges in

failures mode is useful. Fluid paths in tutor help locate problems. Ability to ask for advice
with hypothesis is very useful.

APPENDIX H

SOME RESPONSES TO QUESTIONNAIRE 3

Q: Were some aspects of the tutor more helpful than others? Which ones and why?

Group II

Subject 201: Yes- current failure. Shows which gauges are affected and when a component

is blocked shut or stuck open. Also the tutor helped in outlining fluid paths.

Subject 202: I liked the list of affected gauges which helped narrow down my choices of what

was going wrong.

Subject 203: The tutor made it very clear when a part was stuck open or closed which made
the problems easier. There were some inconveniences however such as not being able to

investigate in the tutor mode.

Subject 204: For the most part the different aspects were used equally and were equally
helpful.

Subject 205: The ability to show the affected gauges and tell when their reading had
changed. The component inquire section where you could ask the function of the parts.
This was very helpful because a great many of the parts were new to me. It helped me to

better understand the component function and what role it might play in the problem.

Subject 206: The current failures helped me to make a path to investigate and it told me the
affected subsystems and fluid paths.

Subject 207: I found the tutor useful in many ways.

Subject 208: The current failure helped me keep track of which gauges I have already
looked at and if they changed or not. I also found the system components and fluid paths
features to help me locate problems and where to look.

Subject 209: Current failures mode was useful.

Subject 210: failure mode and component function were the most useful.

Group ITI

Subject 301: Current failures - you could see gauges affected. Fluid paths and functions-
helped me see where the affected path lead and what each component was called and what it
did. Active tutor stopped me from checking wrong schematics, fluid paths and components

therefore saving a lot of time.

Subject 302: The gauges affected, fluid paths and advice. You could see what was affected
and not worry about other things,

Subject 303: The clipboard allowed me to see which gauges were affected because of the
problem. Also, it would tell me which schematics had nothing to do with the symptoms.

Subject 304: Yes, the gauge readings display helpful for study of problem. Explanations

were also helpful. Component functions and fluid paths useful in solving problems.

Subject 305: Affected gauges displayed were a great help. Hypothesis aiding was also very

useful.
Subject 306: Yes, the current failure part allowed me to see what the nature of the problem
was (i.e., blocked shut, stuck open). The hypothesis advice part helped me see if I was

correct in my diagnosis.

Subject 307: The advice portion kept me going in the right direction. Any function of the

component could be looked up.

Subject 308: The active advice option was helpful because it lets you know if your hypotheses
were valid. The current failure option was helpful in letting you know the extent and
characteristics of different faults.

Subject 309: Yes, current failures, hypothesis advice and component functions.

Subject 310: Helped in not making poor guesses and telling you about wrong schematics
and fluid paths.

370

BIBLIOGRAPHY

Anderson, J. R., Boyle, C. F., and Reiser, B. (1985). Intelligent tutoring systems. Science,
228(4698), pp. 456-462.

Anderson, J. R. (1988). The expert module. In M. C. Polsen and J. J. Richardson (Eds.),
Foundations of ITS, Lawrence Erlbaum Associates, Hillsdale, NJ.

Babcox and Wilcox Company. (1978). Steam: Its generation and use. (39th Ed.).

Brown, J. S., Burton, R. R,, and de Kleer, J. (1982). Pedagogical, natural language and
knowledge engineering techniques in Sophie I, II and III. In D. Sleeman and J. S.
Brown (Eds.), Intelligent Tutoring Systems, Academic Press, London.

Brown, J. S., and Burton, R. R. (1986). Reactive learning environments for teaching
electronic troubleshooting. In W. B. Rouse (Ed.), Advances in Man-Machine Systems
Research Vol. II1. JAI Press Inc., Greenwich, CT.

Bureau of Naval Personnel (1957). Engineering Operation and Maintenance. Prepared by
the Bureau of Naval Personnel

Burns, H., Parlett, J. W., and Redfield, C. L. (Eds.) (1991). Intelligent tutoring systems:
Evolution in design. Lawrence Erlbaum Associates, Hillsdale, NJ.

Burton, R. R., Brown, J. S. (1982). An investigation of computer coaching for informal
learning activities. In D. Sleeman and J. S. Brown (Eds.), Intelligent Tutoring
Systems, Academic Press, London.

Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In D. Sleeman and J.
S. Brown (Eds.), Intelligent Tutoring Systems, Academic Press, London.

Burton, R. R. (1988). The environment module of intelligent tutoring systems. In Polson,
M. C. and Richardson, J. J. (Eds.), Foundations of intelligent tutoring systems.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Charniak, E., and McDermott, D. (1985). Introduction to artificial intelligence. Addison-
Wesley, Reading, MA.

Chu, R. W,, Jones, P. M. and Mitchell, C. M. (1991). The Georgia Tech Payload
Operations Control Center simulation: Design and implementation in C++.
Proceedings of the Society for Computer Simulation Multiconference on
Object-Oriented Simulation 1991, Simulation Series Vol. 23, Number 3, 167-174.

Chu, R. W. (1991). Towards the tutor/aid paradigm: Design of intelligent tutoring systems
for operators of supervisory control systems. Doctoral dissertation, Center for
Human-Machine Systems Research, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA.

Clancey, W. J. (1987). Knowledge-based tutoring: The GUIDON program, MIT Press,
Cambridge, MA.

Cohen, P. R, and Fiegenbaum, E. A., (Eds.) (1982). The Handbook of Artificial
Intelligence, Vol. 111, William Kaufmann, Inc., Los Altos, CA.

Department of Navy Sea Systems Command. Engineering Operational Sequencing
System (EOSS) and Engineering Operational Procedures (EOP).

‘

Fath, J. L. (1987). An architecture for adaptive computer-assisted instruction programs.
Ph.D. thesis, Technical Report CHMSR 87-3, Center for Human-Machine Systems
Research, School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA.

Fath, J. L., Mitchell, C. M., and Govindaraj, T. (1990). An ICAI architecture for
troubleshooting in complex, dynamic systems. IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-20 no. 3, pp. 537-558.

Frasson, C. and Gauthier, G. (Eds.) (1990). Intelligent Tutoring Systems: At the crossroad
of artificial intelligence and education. Ablex Publishing Corp., Norwood, NJ.

Goldstein, I. L. (1986). Training in Organizations: Needs Assessment, Development, and
Evaluation. Brooks/Cole Publishing Co., Pacific Grove, CA.

Govindaraj, T. (1987). Qualitative approximation methodology for modeling and
simulation of large dynamic systems: Applications to a marine powerplant. IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-17 no. 6, pp.937-955.

Govindaraj, T. (1988). Intelligent computer aids for fault diagnosis training of expert
operators of large complex systems. In J. Psotka, L.D. Massey and S.A. Mutter
(Eds.), Intelligent Tutoring Systems: Lessons Learned, Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

Govindaraj, T., and Su, Y. -L. (1988). A model of fault diagnosis performance of expert
marine engineers. International Journal of Man-Machine Studies, vol. 29, pp. 1-20.

Gritzen, E. F. (Ed.) (1980). Introduction to Naval Engineering. Naval Institute Press,
Annapolis, MD.

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, vol.
26 (3), pp. 251-321.

Henneman, R. L., and Rouse, W. B. (1984). Measures of human performance in fault
diagnosis tasks. IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-14
no. 1, pp.99-112,

Hines, W. W., and Montgomery, D. C. (1990). Probability and statistics in engineering
and management science. (Third Ed.). John Wiley and Sons, Inc. Publishers, NY.

Hollan, H. D., Hutchins, E. L., and Weitzman, L. (1984). STEAMER: an interactive
inspectable simulation-based training system. AI Magazine, 5(2), pp 15-27.

Johnson, W. B. (1988). Pragmatic considerations in research, development, and
implementation of intelligent tutoring systems. In Polson, M. C. and Richardson, J.
J. (Eds.), Foundations of intelligent tutoring systems. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Jones, P. M. (1991). Human-Computer cooperative problem solving in supervisory control.
Doctoral dissertation, Center for Human-Machine Systems Research, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Kearsley, G. (1987). Overview. In Kearsley, G. (Ed.), Artificial Intelligence and
Instructions: Applications and Methods. Addison-Wesley, Reading, MA.

Lajoie, S. P., and Lesgold, A. (1990). Apprenticeship training in the workplace: Computer
coached practice environment as a new form of apprenticeship. In Machine-
Mediated Learning.

Lesgold, A. (1990a). Tying development of intelligent tutors to research on theories of
learning. In H. Mand], E. De Corte, S. N. Bennett, and H. F. Friedrich (Eds.),
Learning and Instruction: European research in an intcrnational context. Vol. 3.
Pergamon, Oxford.

Lesgold, A. (1990b). Intelligent computer aids for practice of complex troubleshooting. FAA
symposium on Training Technology.

Lesgold, A., Lajoie, S. P., Bunzo, M., and Eggan, G. (in press). SHERLOCK: A coached
practice environment for an electronics troubleshooting job. In J. Larkin, R. Chabay,
and C. Scheftic (Eds.), Computer assisted instruction and tutoring systems:
Establishing communication and collaboration, Lawrence Erlbaum Associates, NJ.

Macmillan, S. A, Emme, D., and Berkowitz, M. (1988). Instructional Planners: Lessons
Learned. In J. Psotka, L.D. Massey and S.A. Mutter (Eds.), Intelligent Tutoring
Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Marine Safety International. (1983) Personal communications.

Massey, L. D, de Bruin, J., and Roberts, B. (1988). A training system for system
maintenance. In J. Psotka, L.D. Massey and S.A. Mutter (Eds.), Intelligent Tutoring
Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

313

Milliken, G. A., & Johnson, D. E. (1984). Analysis of Messy Data Volume I: Designed
Experiments. Van Nostrand Reinhold Company, New York.

Miller, J. R. (1988). Human-Computer interaction and intelligent tutoring systems. In
Foundations of ITSs, Polsen and Richardson, Eds. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Miller, R. A. (1985). A systems approach to modeling discrete control performance. In W.
B. Rouse (Ed.), Advances in Man-Machine Systems Rescz~ch Vol. I1. JAI Press Inc.,
Greenwich, CT.

Moran, T. P. (1983). Getting into a system: external-internal task mapping analysis.
Proceedings of the ACM - CHI Conference on Human Factors in Computing Systems.
Boston, pp 45-49, 1983.

Mitchell, C. M., and Miller, R. A. (1986). A discrete control model of operator function: A
methodology for information display design. IEEE Transactions on System, Man,
and Cybernetics, vol. SMC-16(3), pp. 343-3517.

Munro, A., Fehling, M. R., and Towne, D. M. (1985). Instruction intrusiveness in
dynamic simulation training. Journal of Computer-Based Instruction, vol. 12 (2), pp.
50-53.

Naval Training Command (1973). Engineering Administration. United States
Government Printing Office, Washington D.C.

Nii, H. P. (1986). Blackboard systems. AI Magazine, vol. 7-2 and 7-3.

Nii, H. P, Feigenbaum, E. A, Anton, J. J., and Rockmore, A. J. (1982).
Signal-to-symbol transformation: HASP/SIAP case study. Report No. HPP-82-6,
Heuristic Programming Project, Heuristic Programming Project, Stanford
University, Stanford, CA.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto, CA.

Psotka, J., Massey, L. D., and Mutter, S. A. (Eds.) (1988). Intelligent Tutoring Systems:
Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Rasmussen, J. (1985). The role of hierarchical knowledge representation in decision
making and system management. IEEE Transactions on System, Man, and
Cybernetics, vol. SMC-15(2), pp. 234-243.

Rasmussen, J. (1986). Information processing and human machine interaction: An
approach to cognitive engineering, North-Holland, N.Y.

Rich, E. (1983). Artificial Intelligence. McGraw-Hill, New York.

314

Rickel, J.W., Intelligent Computer-Aided Instruction: A survey Organized Around
System Components. IEEE Transactions on Systems, Man, and Cybernetics, vol 19,
No. 1, pp. 40-57, 1989.

Rouse, W. B. (1982). Models of human problem solving: Detection, diagnosis and
compensation for system failures. Automatica, vol. 19, pp. 613-625.

Rubin, K. S., Jones, P. M. and Mitchell, C. M. (1988). OFMspert: Inference of operator
intentions in supervisory control using a blackboard architecture. IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-18, pp. 618-637.

Sheridan, T. B., and Johannsen, G. (Eds.) (1976). Monitoring behavior and supervisory
control, Plenum, New York.

Sleeman, D., and Brown, J. S., (Eds.) (1982). Intelligent tutoring systems, Academic
Press, Orlando, Florida.

Su, Y.-L. (1985). Modeling fault diagnosis performance on a marine power plant
simulator. Doctoral dissertation, Center for Human-Machine Systems
Research, School of Industrial and Systems Engineering, Georgia Institute of
Technology

Su, Y.-L., and Govindaraj, T. (1986). Fault diagnosis in a large dynamic system:
Experiments on a training simulator. IEEE Transactions on Systems, Man, and
Cvhernetics, vol. SMC-16(1), pp. 129-141.

Takahashi, Y., Rabins, and M. J., Auslander, D. M., (1972). Control and dynamic
systems. Addison-Wesley Publishing Company, Rading, MA.

Towne, D. M., and Munro, A. (1988). Intelligent maintenance training system. In J.
Psotka, L. D. Massey and S. A. Mutter (Eds.), Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Towne, D. M., and Munro, A. (1990). Model-building tools for simulation based training.
In Interactive learning environments, 1, pp. 33-50.

Towne, D. M. (1986). The generalized maintenance trainer: Evolution and revolution. In
W. B. Rouse (Ed.), Advances in Man-Machine Systems Research Vol. I1I.
Greenwich, CT: JAI Press Inc.

Vasandani, V., and Govindaraj, T. (1988). A model of the operator's task in diagnostic
problem solving. In Empirical Foundations of Information and Software Science V,
pp. 237-248.

315

Vasandani, V., Govindaraj, T., and Mitchell, C.M. (1989). An Intelligent Tutor for
Diagnostic Problem Solving in Complex Dynamic Systems. Proceedings of The 1989
IEEE International Conference on Systems, Man, and Cybernetics, vol. II, pp. 772-7717. PS

Vasandani, V., and Govindaraj, T. (1990). Knowledge Representation and Human-
Computer Interaction in an Intelligent Tutor for Diagnostic Problem Solving.
Proceedings of The 1990 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 665-667.

®
Vasandani, V., and Govindaraj, T. (1991). Experimental Evaluation of an
Intelligent Tutor for Diagnostic Problem Solving. Proceedings of The 1991
International Conference on the Learning Sciences, pp.414-421.
Vasandani, V., and Govindaraj, T. (1991).Intelligent Diagnostic Problem Solving Tutor: @

An Experimental Evaluation. Accepted for presentation at The 1991 IEEE
International Conference on Systems, Man, and Cybernetics to be held in
Charlottesville, VA. Oct, 1991.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge, Morgan Kaufmann ®
Publishers, Los Altos California.

Wickens, C. D. (1984). Engineering psychology and human performance, Charles
Merrill, Columbus, Ohio.

®
Winston, P. H. (1980). Artificial Intelligence (Second Ed.). Addison-Wesley, Reading,
MA.
Woods, D. D. (1986). Cognitive technologies: The design of joint human-machine
cognitive systems. Al Magazine, pp. 86-92. ®
Woods, D.D. (1984). Visual momentum: a conceot to improve the cognitive coupling of
person and computer. International Journal of Man-Machine Studies, vol. 21, pp. 229
244, '
Woolf, B. P., and McDonald, D. D. (1984). Building a computer tutor: Design issues. IEEE ®
Computer, 17(9), pp. 61-73.
Woolf, B. P. (1986). Teaching a complex industrial process. Coins Technical Report 86-24,
Computer and Information Science, University of Massachusetts, Amherst, MA.
®
®

376

VITA

Vijay Vasandani was born on December 4, 1960 in Sindri, India. He received the
Bachelor of Science degree in Mechanical Engineering from Punjab Engineering
College, Chandigarh, in 1983. He received the Master of Science degree in Mechanical
Engineering from North Carolina A & T State University, Greensboro, NC, in 1986. He
enrolled in the graduate studies program at Georgia Institute of Technology in 1986 from

where he received the Master of Science degree in Industrial and Systems Engineering in
1989.

